A Novel and Enhanced Distributed Clustering Methodology for Large Scale Wireless Sensor Network Fields

2019 ◽  
Vol 16 (2) ◽  
pp. 633-638
Author(s):  
Hamid Ali Abed Al-Asadi

Wireless sensor network (WSN) is a grid of sensors possessing processor unit and trivial memory unit implanted on them. Trustworthy packet forwarding from nodes to sink seems to be the most substantial purpose of this sensor network. The customary routing algorithms could not be employed at this juncture since the sensor battery power is limited. To provide energy proficiency, sensors are normally grouped as non-overlapping groups. This research work provides a transitory summary on clustering procedures in sensor networks. An energy-efficient distributed clustering approach for impenetrable sensor networks, the Weight based clustering Low Energy Adaptive Clustering Hierarchy (WC-LEACH) is proposed and the outcomes are assessed in contradiction with the prevailing Low Energy Adaptive Clustering Hierarchy (LEACH) and Hybrid Energy Efficient Distributed Clustering (HEED) methodologies. Simulation results obviously display an exceptional enhancement in packet delivery ratio, reduced packet loss, reduced energy consumption, increased throughput and increased lifetime for WSNs.

Author(s):  
Boselin Prabhu ◽  
Bala Kumar

Wireless sensor network (WSN) is a low-powered prestigious network fashioned by sensor nodes that treasures application in civilian, military, visual sense models and many others. Reduced energy utilization is an exigent task for these sensor networks. By the data aggregation procedure, needless communication between sensor nodes, cluster head and the base station is eluded. An evaluation of energy efficient optical low energy adaptive clustering hierarchy has been performed and the enactments have been compared with the prevailing low energy adaptive clustering hierarchy algorithm, between two detached wireless sensor network fields. The proposed clustering procedure has been primarily implemented to join two distinct wireless sensor fields. An optical fiber is used to join two reserved wireless sensor fields. This distributed clustering methodology chiefly targets in exploiting the parameters like network lifetime, throughput and energy efficiency of the whole wireless sensor system.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 791
Author(s):  
Nader Ajmi ◽  
Abdelhamid Helali ◽  
Pascal Lorenz ◽  
Ridha Mghaieth

Nowadays due to smart environment creation there is a rapid growth in wireless sensor network (WSN) technology real time applications. The most critical resource in in WSN is battery power. One of the familiar methods which mainly concentrate in increasing the power factor in WSN is clustering. In this research work, a novel concept for clustering is introduced which is multi weight chicken swarm based genetic algorithm for energy efficient clustering (MWCSGA). It mainly consists of six sections. They are system model, chicken swarm optimization, genetic algorithm, CCSO-GA cluster head selection, multi weight clustering model, inter cluster, and intra cluster communication. In the performance evaluation the proposed model is compared with few earlier methods such as Genetic Algorithm-Based Energy-Efficient Adaptive Clustering Protocol For Wireless Sensor Networks (GA-LEACH), Low energy adaptive Clustering hierarchy approach for WSN (MW-LEACH) and Chicken Swarm Optimization based Genetic Algorithm (CSOGA). During the comparison it is proved that our proposed method performed well in terms of energy efficiency, end to end delay, packet drop, packet delivery ratio and network throughput.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1313 ◽  
Author(s):  
Muhammad Awais ◽  
Nadeem Javaid ◽  
Amjad Rehman ◽  
Umar Qasim ◽  
Musaed Alhussein ◽  
...  

Nowadays, the Internet of Things enabled Underwater Wireless Sensor Network (IoT-UWSN) is suffering from serious performance restrictions, i.e., high End to End (E2E) delay, low energy efficiency, low data reliability, etc. The necessity of efficient, reliable, collision and interference-free communication has become a challenging task for the researchers. However, the minimum Energy Consumption (EC) and low E2E delay increase the performance of the IoT-UWSN. Therefore, in the current work, two proactive routing protocols are presented, namely: Bellman–Ford Shortest Path-based Routing (BF-SPR-Three) and Energy-efficient Path-based Void hole and Interference-free Routing (EP-VIR-Three). Then we formalized the aforementioned problems to accomplish the reliable data transmission in Underwater Wireless Sensor Network (UWSN). The main objectives of this paper include minimum EC, interference-free transmission, void hole avoidance and high Packet Delivery Ratio (PDR). Furthermore, the algorithms for the proposed routing protocols are presented. Feasible regions using linear programming are also computed for optimal EC and to enhance the network lifespan. Comparative analysis is also performed with state-of-the-art proactive routing protocols. In the end, extensive simulations have been performed to authenticate the performance of the proposed routing protocols. Results and discussion disclose that the proposed routing protocols outperformed the counterparts significantly.


Webology ◽  
2021 ◽  
Vol 18 (05) ◽  
pp. 1226-1235
Author(s):  
Vasuki C ◽  
Dr. Kavitha S ◽  
Bhuvaneswari S

Wireless sensor networks are greatly utilized by various applications and environments to sense and transmit the data. As wireless sensor network doesn’t have any centralized architecture, there will be various issues occurs in the network such as data transmission failure, data security issues, energy resource limitation and so on. Various authors focused these issues and published different research works to resolve these issues. In this analysis work, energy efficient and secured data transmission techniques introduced by various authors has been discussed in detailed based on their working procedure and simulation methods. And also this research work provided the overall analysis of the research work based on merits and demerits and each and every technique discussed in the literature section. And also, this research work concluded with numerical evaluation between most recent works in terms of energy consumption and security level. This numerical evaluation is done in the NS2 simulation environment.


Author(s):  
Zahoor Ahmed ◽  
Kamalrulnizam Abu Bakar

The deployment of Linear Wireless Sensor Network (LWSN) in underwater environment has attracted several research studies in the underwater data collection research domain. One of the major issues in underwater data collection is the lack of robust structure in the deployment of sensor nodes. The challenge is more obvious when considering a linear pipeline that covers hundreds of kilometers. In most of the previous work, nodes are deployed not considering heterogeneity and capacity of the various sensor nodes. This lead to the problem of inefficient data delivery from the sensor nodes on the underwater pipeline to the sink node at the water surface. Therefore, in this study, an Enhanced Underwater Linear Wireless Sensor Network Deployment (EULWSND) has been proposed in order to improve the robustness in linear sensor underwater data collection. To this end, this paper presents a review of related literature in an underwater linear wireless sensor network. Further, a deployment strategy is discussed considering linearity of the underwater pipeline and heterogeneity of sensor nodes. Some research challenges and directions are identified for future research work. Furthermore, the proposed deployment strategy is implemented using AQUASIM and compared with an existing data collection scheme. The result demonstrates that the proposed EULWSND outperforms the existing Dynamic Address Routing Protocol for Pipeline Monitoring (DARP-PM) in terms of overhead and packet delivery ratio metrics. The scheme performs better in terms of lower overhead with 17.4% and higher packet delivery with 20.5%.


2019 ◽  
Vol 29 (09) ◽  
pp. 2050141 ◽  
Author(s):  
Muhammed Enes Bayrakdar

In this paper, a monitoring technique based on the wireless sensor network is investigated. The sensor nodes used for monitoring are developed in a simulation environment. Accordingly, the structure and workflow of wireless sensor network nodes are designed. Time-division multiple access (TDMA) protocol has been chosen as the medium access technique to ensure that the designed technique operates in an energy-efficient manner and packet collisions are not experienced. Fading channels, i.e., no interference, Ricean and Rayleigh, are taken into consideration. Energy consumption is decreased with the help of ad-hoc communication of sensor nodes. Throughput performance for different wireless fading channels and energy consumption are evaluated. The simulation results show that the sensor network can quickly collect medium information and transmit data to the processing center in real time. Besides, the proposed technique suggests the usefulness of wireless sensor networks in the terrestrial areas.


Sign in / Sign up

Export Citation Format

Share Document