Paddy Growing Stages Model Based on Vegetation Indices Using Ultra-High Spatial Resolution Images

2020 ◽  
Vol 17 (2) ◽  
pp. 1275-1281
Author(s):  
S. Supriatna ◽  
Fida Afdhalia ◽  
Iqbal Putut Ash Shidiq ◽  
Masita Dwi Mandini Manessa ◽  
Yoanna Ristya

Paddy is one of the most important food sources in Indonesia. It is evidenced by the increasing number of national rice consumption averagely at 6.29% per year, particularly in 2011–2015. However, the production seems does not equally match the rise in consumption. Estimates in rice production are relatively unreliable. It is due to the uneven planting time in several areas and a conventional method applied to estimate the production. This study proposes alternative methods to estimate rice production. This study aims to analyze the paddy growing stages and determine the most optimal model to estimate the paddy growing stages based on the vegetation indices. This study used the excellence of remote sensing technology especially for paddy field monitoring, emphasizing on paddy growing stages assessment. An airborne remote sensing platform, specifically the Unmanned Aerial Vehicle (UAV) is used to map the rice field in Bekasi Regency, West Java Province. Through mapping at low altitude, the UAV can produce images with ultra-high resolution, so it is very well used for mapping the paddy growing stages with diverse characteristics. Several vegetation indices, derived from Red, Green, and Blue (RGB) bands, namely Normalized Green Red Difference Index (NGRDI), Excess Green Vegetation Index (ExG), and Visible Atmospherically Resistant Index (VARI). Furthermore, the regression model is used to obtain the most optimal model of the three vegetation indices used for estimating the paddy growing stages. The result showed that the UAV with RGB bands could be used as a sensor to determine the relationship between vegetation indices to the paddy growing stages and the most optimal model for estimating the paddy growing stages based on the vegetation indices is ExG (R2 = 0.88).

2021 ◽  
Vol 25 (9) ◽  
pp. 30-37
Author(s):  
N.N. Sliusar ◽  
A.P. Belousova ◽  
G.M. Batrakova ◽  
R.D. Garifzyanov ◽  
M. Huber-Humer ◽  
...  

The possibilities of using remote sensing of the Earth data to assess the formation of phytocenoses at reclaimed dumps and landfills are presented. The objects of study are landfills and dumps in the Perm Territory, which differed from each other in the types and timing of reclamation work. The state of the vegetation cover on the reclaimed and self-overgrowing objects was compared with the reference plots with naturally formed herbage of zonal meadow vegetation. The process of reclamation of the territory of closed landfills was assessed by the presence and homogeneity of the vegetation layer and by the values of the vegetation index NDVI. To identify the dynamics of changes in the vegetation cover, we used multi-temporal satellite images from the open resources of Google Earth and images in the visible and infrared ranges of the Landsat-5/TM and Landsat-8/OLI satellites. It is shown that the data of remote sensing of the Earth, in particular the analysis of vegetation indices, can be used to assess the dynamics of overgrowing of territories of reclaimed waste disposal facilities, as well as an additional and cost-effective method for monitoring the restoration of previously disturbed territories.


2019 ◽  
Vol 11 (5) ◽  
pp. 1410 ◽  
Author(s):  
Suman Moparthy ◽  
Dominique Carrer ◽  
Xavier Ceamanos

The ability of spatial remote sensing in the visible domain to properly detect the slow transitions in the Earth’s vegetation is often a subject of debate. The reason behind this is that the satellite products often used to calculate vegetation indices such as surface albedo or reflectance, are not always correctly decontaminated from atmospheric effects. In view of the observed decline in vegetation over the Congo during the last decade, this study investigates how effectively satellite-derived variables can contribute to the answering of this question. In this study, we use two satellite-derived surface albedo products, three satellite-derived aerosol optical depth (AOD) products, two model-derived AOD products, and synthetic observations from radiative transfer simulations. The study discusses the important discrepancies (of up to 70%) found between these satellite surface albedo products in the visible domain over this region. We conclude therefore that the analysis of trends in vegetation properties based on satellite observations in the visible domain such as NDVI (normalized difference vegetation index), calculated from reflectance or albedo variables, is still quite questionable over tropical forest regions such as the Congo. Moreover, this study demonstrates that there is a significant increase (of up to 14%) in total aerosols within the last decade over the Congo. We note that if these changes in aerosol loads are not correctly taken into account in the retrieval of surface albedo, a greenness change of the surface properties (decrease of visible albedo) of around 8% could be artificially detected. Finally, the study also shows that neglecting strong aerosol emissions due to volcano eruptions could lead to an artificial increase of greenness over the Congo of more than 25% in the year of the eruptions and up to 16% during the 2–3 years that follow.


2013 ◽  
Vol 10 (10) ◽  
pp. 6279-6307 ◽  
Author(s):  
E. Boegh ◽  
R. Houborg ◽  
J. Bienkowski ◽  
C. F. Braban ◽  
T. Dalgaard ◽  
...  

Abstract. Leaf nitrogen and leaf surface area influence the exchange of gases between terrestrial ecosystems and the atmosphere, and play a significant role in the global cycles of carbon, nitrogen and water. The purpose of this study is to use field-based and satellite remote-sensing-based methods to assess leaf nitrogen pools in five diverse European agricultural landscapes located in Denmark, Scotland (United Kingdom), Poland, the Netherlands and Italy. REGFLEC (REGularized canopy reFLECtance) is an advanced image-based inverse canopy radiative transfer modelling system which has shown proficiency for regional mapping of leaf area index (LAI) and leaf chlorophyll (CHLl) using remote sensing data. In this study, high spatial resolution (10–20 m) remote sensing images acquired from the multispectral sensors aboard the SPOT (Satellite For Observation of Earth) satellites were used to assess the capability of REGFLEC for mapping spatial variations in LAI, CHLland the relation to leaf nitrogen (Nl) data in five diverse European agricultural landscapes. REGFLEC is based on physical laws and includes an automatic model parameterization scheme which makes the tool independent of field data for model calibration. In this study, REGFLEC performance was evaluated using LAI measurements and non-destructive measurements (using a SPAD meter) of leaf-scale CHLl and Nl concentrations in 93 fields representing crop- and grasslands of the five landscapes. Furthermore, empirical relationships between field measurements (LAI, CHLl and Nl and five spectral vegetation indices (the Normalized Difference Vegetation Index, the Simple Ratio, the Enhanced Vegetation Index-2, the Green Normalized Difference Vegetation Index, and the green chlorophyll index) were used to assess field data coherence and to serve as a comparison basis for assessing REGFLEC model performance. The field measurements showed strong vertical CHLl gradient profiles in 26% of fields which affected REGFLEC performance as well as the relationships between spectral vegetation indices (SVIs) and field measurements. When the range of surface types increased, the REGFLEC results were in better agreement with field data than the empirical SVI regression models. Selecting only homogeneous canopies with uniform CHLl distributions as reference data for evaluation, REGFLEC was able to explain 69% of LAI observations (rmse = 0.76), 46% of measured canopy chlorophyll contents (rmse = 719 mg m−2) and 51% of measured canopy nitrogen contents (rmse = 2.7 g m−2). Better results were obtained for individual landscapes, except for Italy, where REGFLEC performed poorly due to a lack of dense vegetation canopies at the time of satellite recording. Presence of vegetation is needed to parameterize the REGFLEC model. Combining REGFLEC- and SVI-based model results to minimize errors for a "snap-shot" assessment of total leaf nitrogen pools in the five landscapes, results varied from 0.6 to 4.0 t km−2. Differences in leaf nitrogen pools between landscapes are attributed to seasonal variations, extents of agricultural area, species variations, and spatial variations in nutrient availability. In order to facilitate a substantial assessment of variations in Nl pools and their relation to landscape based nitrogen and carbon cycling processes, time series of satellite data are needed. The upcoming Sentinel-2 satellite mission will provide new multiple narrowband data opportunities at high spatio-temporal resolution which are expected to further improve remote sensing capabilities for mapping LAI, CHLl and Nl.


2020 ◽  
Author(s):  
Nikolaus Obojes ◽  
Jennifer Klemm ◽  
Ruth Sonnenschein ◽  
Francesco Giammarchi ◽  
Giustino Tonon ◽  
...  

<p>To prevent further erosion of pastures along the south slopes of the Vinschgau/Val Venosta (South Tyrol/Italy) about 900 ha of non-native black pine (Pinus nigra) have been afforested there between 1900 and the 1960s. This drought-tolerant Mediterranean species was supposed to be able to cope with the dry climate at degraded soils in the inner-alpine dry valley. Nevertheless, black pine in the Vinschgau has been affected by reoccurring tree vitality decline and diebacks in the last 20 years linked to repeated droughts and heat waves. Observing growth trends via tree ring analysis is usually restricted to single stands. On the other hand, remote sensing data to track tree vitality was not available in sufficient spatial and temporal resolution to be applied to complex mountain terrain until recently. This has changed with the launch of the Sentinel-2 A and B satellites in 2015 and 2017 with a spatial resolution of 10 to 20 m and a revisiting period of 5 days. To analyse the accordance of remote sensing-based vegetation indices to tree-ring based growth data, we compared twelve sites across the Vinschgau/Val Venosta with a differing degree of vitality loss in 2017 for a four-year period from 2015 to 2018. In general, less vital sites were located at lower elevation and on steeper slopes. Radial tree growth was positively correlated to spring precipitation and strongly decreased during earlier hot and dry years such as 1995 and 2003. We found high and statistically significant correlations between site-average basal area increment as well as tree ring width indices and multiple vegetation indices (Normalized Difference Vegetation Index NDVI, Green Normalized Difference Vegetation Index GNDVI, Normalized Difference Infrared Index NDII, Moisture Stress Index MSI) especially for the dry 2017 growing season and the 2018 recovery year, which had large gradients in tree vitality between sites. Overall, these results show that remote sensing-based vegetation indices can be used to scale up stand level growth data also in complex mountain terrain.</p>


Author(s):  
A. Azabdaftari ◽  
F. Sunar

Soil salinity is one of the most important problems affecting many areas of the world. Saline soils present in agricultural areas reduce the annual yields of most crops. This research deals with the soil salinity mapping of Seyhan plate of Adana district in Turkey from the years 2009 to 2010, using remote sensing technology. In the analysis, multitemporal data acquired from LANDSAT 7-ETM<sup>+</sup> satellite in four different dates (19 April 2009, 12 October 2009, 21 March 2010, 31 October 2010) are used. As a first step, preprocessing of Landsat images is applied. Several salinity indices such as NDSI (Normalized Difference Salinity Index), BI (Brightness Index) and SI (Salinity Index) are used besides some vegetation indices such as NDVI (Normalized Difference Vegetation Index), RVI (Ratio Vegetation Index), SAVI (Soil Adjusted Vegetation Index) and EVI (Enhamced Vegetation Index) for the soil salinity mapping of the study area. The field’s electrical conductivity (EC) measurements done in 2009 and 2010, are used as a ground truth data for the correlation analysis with the original band values and different index image bands values. In the correlation analysis, two regression models, the simple linear regression (SLR) and multiple linear regression (MLR) are considered. According to the highest correlation obtained, the 21st March, 2010 dataset is chosen for production of the soil salinity map in the area. Finally, the efficiency of the remote sensing technology in the soil salinity mapping is outlined.


Author(s):  
Foteini ANGELOPOULOU ◽  
Evangelos ANASTASIOU ◽  
Spyros FOUNTAS ◽  
Dimitrios BILALIS

A field experiment was conducted in Southern Greece to assess Normalized Difference Vegetation Index (NDVI) and Red-Edge Normalized Difference Vegetation Index (NDRE) in estimating Camelina’s crop growth and yield parameters under different tillage systems (conventional and minimum tillage) and organic fertilization types (compost, vermicompost and untreated control). A proximal canopy sensor was used to measure the aforementioned Spectral Vegetation Indices (SVIs) at different days after sowing (DAS). Camelina presented the highest values of NDVI and NDRE under compost fertilization (0.63 and 0.22 accordingly) and minimum tillage system (0.50 and 0.18 accordingly). Additionally, the highest correlations between the measured crop parameters and NDVI, NDRE were achieved at leaf development to early flowering stage. Moreover, NDRE presented the highest correlation with seed yield (R2=0.60, p<0.05) and thus it is suggested for estimating Camelina’s productivity instead of NDVI. Finally, further research is needed for adopting the use of remote sensing technologies on predicting Camelina’s crop growth and yield.


Author(s):  
A. Azabdaftari ◽  
F. Sunar

Soil salinity is one of the most important problems affecting many areas of the world. Saline soils present in agricultural areas reduce the annual yields of most crops. This research deals with the soil salinity mapping of Seyhan plate of Adana district in Turkey from the years 2009 to 2010, using remote sensing technology. In the analysis, multitemporal data acquired from LANDSAT 7-ETM<sup>+</sup> satellite in four different dates (19 April 2009, 12 October 2009, 21 March 2010, 31 October 2010) are used. As a first step, preprocessing of Landsat images is applied. Several salinity indices such as NDSI (Normalized Difference Salinity Index), BI (Brightness Index) and SI (Salinity Index) are used besides some vegetation indices such as NDVI (Normalized Difference Vegetation Index), RVI (Ratio Vegetation Index), SAVI (Soil Adjusted Vegetation Index) and EVI (Enhamced Vegetation Index) for the soil salinity mapping of the study area. The field’s electrical conductivity (EC) measurements done in 2009 and 2010, are used as a ground truth data for the correlation analysis with the original band values and different index image bands values. In the correlation analysis, two regression models, the simple linear regression (SLR) and multiple linear regression (MLR) are considered. According to the highest correlation obtained, the 21st March, 2010 dataset is chosen for production of the soil salinity map in the area. Finally, the efficiency of the remote sensing technology in the soil salinity mapping is outlined.


2005 ◽  
Vol 62 (3) ◽  
pp. 199-207 ◽  
Author(s):  
Maurício dos Santos Simões ◽  
Jansle Vieira Rocha ◽  
Rubens Augusto Camargo Lamparelli

Spectral information is well related with agronomic variables and can be used in crop monitoring and yield forecasting. This paper describes a multitemporal research with the sugarcane variety SP80-1842, studying its spectral behavior using field spectroscopy and its relationship with agronomic parameters such as leaf area index (LAI), number of stalks per meter (NPM), yield (TSS) and total biomass (BMT). A commercial sugarcane field in Araras/SP/Brazil was monitored for two seasons. Radiometric data and agronomic characterization were gathered in 9 field campaigns. Spectral vegetation indices had similar patterns in both seasons and adjusted to agronomic parameters. Band 4 (B4), Simple Ratio (SR), Normalized Difference Vegetation Index (NDVI), and Soil Adjusted Vegetation Index (SAVI) increased their values until the end of the vegetative stage, around 240 days after harvest (DAC). After that stage, B4 reflectance and NDVI values began to stabilize and decrease because the crop reached ripening and senescence stages. Band 3 (B3) and RVI presented decreased values since the beginning of the cycle, followed by a stabilization stage. Later these values had a slight increase caused by the lower amount of green vegetation. Spectral variables B3, RVI, NDVI, and SAVI were highly correlated (above 0.79) with LAI, TSS, and BMT, and about 0.50 with NPM. The best regression models were verified for RVI, LAI, and NPM, which explained 0.97 of TSS variation and 0.99 of BMT variation.


2020 ◽  
Vol 12 (21) ◽  
pp. 3558
Author(s):  
Lifeng Xie ◽  
Weicheng Wu ◽  
Xiaolan Huang ◽  
Penghui Ou ◽  
Ziyu Lin ◽  
...  

Rare earth elements (REEs) are widely used in various industries. The open-pit mining and chemical extraction of REEs in the weathered crust in southern Jiangxi, China, since the 1970s have provoked severe damages to the environment. After 2010, different restorations have been implemented by various enterprises, which seem to have a spatial variability in both management techniques and efficiency from one mine to another. A number of vegetation indices, e.g., normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), enhanced vegetation index (EVI) and atmospherically resistant vegetation index (ARVI), can be used for this kind of monitoring and assessment but lack sensitivity to subtle differences. For this reason, the main objective of this study was to explore the possibility to develop new, mining-tailored remote sensing indicators to monitor the impacts of REE mining on the environment and to assess the effectiveness of its related restoration using multitemporal Landsat data from 1988 to 2019. The new indicators, termed mining and restoration assessment indicators (MRAIs), were developed based on the strong contrast of spectral reflectance, albedo, land surface temperature (LST) and tasseled cap brightness (TCB) of REE mines between mining and postmining restoration management. These indicators were tested against vegetation indices such as NDVI, EVI, SAVI and generalized difference vegetation index (GDVI), and found to be more sensitive. Of similar sensitivity to each other, one of the new indicators was employed to conduct the restoration assessment of the mined areas. Six typically managed mines with different restoration degrees and management approaches were selected as hotspots for a comparative analysis to highlight their temporal trajectories using the selected MRAI. The results show that REE mining had experienced a rapid expansion in 1988–2010 with a total mined area of about 66.29 km2 in the observed counties. With implementation of the post-2010 restoration measures, an improvement of varying degrees in vegetation cover in most mines was distinguished and quantified. Hence, this study with the newly developed indicators provides a relevant approach for assessing the sustainable exploitation and management of REE resources in the study area.


2017 ◽  
Vol 6 (1) ◽  
pp. 149-158 ◽  
Author(s):  
Mohamed Elhag ◽  
Jarbou A. Bahrawi

Abstract. Vegetation indices are mostly described as crop water derivatives. The normalized difference vegetation index (NDVI) is one of the oldest remote sensing applications that is widely used to evaluate crop vigor directly and crop water relationships indirectly. Recently, several NDVI derivatives were exclusively used to assess crop water relationships. Four hydrological drought indices are examined in the current research study. The water supply vegetation index (WSVI), the soil-adjusted vegetation index (SAVI), the moisture stress index (MSI) and the normalized difference infrared index (NDII) are implemented in the current study as an indirect tool to map the effect of different soil salinity levels on crop water stress in arid environments. In arid environments, such as Saudi Arabia, water resources are under pressure, especially groundwater levels. Groundwater wells are rapidly depleted due to the heavy abstraction of the reserved water. Heavy abstractions of groundwater, which exceed crop water requirements in most of the cases, are powered by high evaporation rates in the designated study area because of the long days of extremely hot summer. Landsat 8 OLI data were extensively used in the current research to obtain several vegetation indices in response to soil salinity in Wadi ad-Dawasir. Principal component analyses (PCA) and artificial neural network (ANN) analyses are complementary tools used to understand the regression pattern of the hydrological drought indices in the designated study area.


Sign in / Sign up

Export Citation Format

Share Document