Modeling the Magnetic Properties of La0.62Er0.05Ba0.33Fe0.2Mn0.8O3: Mean-Field Study and Bean Rodbell Model

2020 ◽  
Vol 17 (4) ◽  
pp. 1571-1575
Author(s):  
Samia Yahyaoui ◽  
Amel Abassi ◽  
Mounira Abassi

The Brillouin function, the phase transition and the related magnetic properties in La0.62Er0.05Ba0.33Fe0.2Mn0.8O3 perovskite have been studied using Bean-Rodbell model. The Brillouin function allows determining the total momentum J and the mean filed exchange parameter λ of the perovskite. The mean-filed equation draws the system to second order phase transition. These constants were used to stimulate the experimental isotherms M (H, T) by meanfield theory. The predicted results are compared to the available experimental data. It is noted that a good agreement has been found, with minor discrepancies, between theoretical and experimental data.

1993 ◽  
Vol 07 (27) ◽  
pp. 1725-1731 ◽  
Author(s):  
L. DE CESARE ◽  
I. RABUFFO ◽  
D.I. UZUNOV

The phase transitions described by coupled spin -1/2 Ising models are investigated with the help of the mean field and the renormalization group theories. Results for the type of possible phase transitions and their fluctuation properties are presented. A fluctuation-induced second-order phase transition is predicted.


1970 ◽  
Vol 48 (23) ◽  
pp. 2857-2867 ◽  
Author(s):  
A. Rosencwaig

A statistical model based on the concept of localized canting, originally proposed by Geller and coworkers, is developed to account for the magnetic properties of substituted ferrimagnets. This model is used to determine the exchange parameter ratios Jdd/Jdd and Jaa/Jad in YIG systems by evaluating the magnetic moments and Curie temperatures of two classes of singly substituted YIG over the entire substitution range. Good agreement with experimental data is obtained with the physically reasonable exchange parameter ratios of [Formula: see text] and Jaa/Jad *~ 0.07. It is also shown that both the Yafet-Kittel and the Nowik models may be regarded as particular limiting cases of the new model.


Author(s):  
Mohamed Hsini ◽  
Sadok Zemni

In this paper, we have exploited the mean field theory combined with the Bean-Rodbell model to justify the magnetocaloric effect (MCE) in Nd0.67Ba0.33Mn0.98Fe0.02O3 sample. The simulation of some magnetic properties has been investigated. Modeling magnetization curves have been successfully achieved using this model. The second-order ferromagnetic-paramagnetic (FM-PM) phase transition of our system has been verified through the value of the parameter which controls the transition nature in the Bean-Rodbell model. Theoretical and experimental expressions, which have rated the magnetic entropy change ( − ∆ S M ) under various magnetic fields, have been derived. Theoretical ( − ∆ S M ) curves have been compared to the experimental ones.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012081
Author(s):  
J. C. G. Tedesco ◽  
V.J. Monteiro ◽  
A. M. G. Carvalho ◽  
L.P. Cardoso ◽  
A. A. Coelho

Abstract Simulations of the magnetic heat capacity of some (Pr, Tb)Al2 compounds were performed using the mean-field approach. The developed routine aims to optimize the set of mean-field parameters. The proposed algorithm calculates the sum of squared differences between the experimental points and the simulated curve and then changes the parameters in order to minimize this sum. This searching leads to consistent values that can reproduce the experimental data. The parameters found in this work reproduced the heat capacities curves of the PrxTb(1−x)Al2 compounds, x=0.25, x=0.50 and x=0.75, with good agreement. The physical limitations of the mean-field approach do not preclude analysing the results. These parameters are important because they can help to understand and calculate the magnetocaloric effect these materials can present.


2017 ◽  
Vol 31 (09) ◽  
pp. 1750092 ◽  
Author(s):  
H. Yurtseven ◽  
U. Ipekoğlu ◽  
S. Ateş

Tilt angle (order parameter) and the susceptibility are calculated as a function of temperature for the [Formula: see text]–[Formula: see text] transition in quartz using a Landau phenomenological model. The tilt angle as obtained from the model is fitted to the experimental data from the literature and the temperature dependence of the tilt angle susceptibility is predicted close to the [Formula: see text]–[Formula: see text] transition in quartz. Our results show that the mean field model explains the observed behavior of the [Formula: see text]–[Formula: see text] phase transition in quartz adequately and it can be applied to some related materials.


2016 ◽  
Vol 31 (19) ◽  
pp. 1650110 ◽  
Author(s):  
Jun-Wang Lu ◽  
Ya-Bo Wu ◽  
Jian Xiao ◽  
Cui-Juan Lu ◽  
Mo-Lin Liu

In the probe limit, we study the holographic [Formula: see text]- and [Formula: see text]-wave superconductors in the IR modified Hořava–Lifshitz gravity and obtain the effect of the gravity parameter [Formula: see text] on the condensate and the AC conductivity. Concretely, for the two models, the increasing [Formula: see text] makes the superconductor phase transition more difficult. Moreover, at the critical point, both systems undergo a second-order phase transition as expected from the mean field theory, and the superfluid density decreases with the temperature linearly, which is consistent with the Ginzburg–Landau theory. Meanwhile, the analytical results back up the numerical results. What is more, in the superconducting phase, the ratio of the energy gap to the critical temperature, i.e. [Formula: see text], decreases with the increasing [Formula: see text]. In addition, our results generalize the previous work on holographic superconductors in Hořava–Lifshitz gravity to some extent.


2021 ◽  
Vol 29 (1) ◽  
pp. 5-14
Author(s):  
D. Anchishkin ◽  
V. Gnatovskyy ◽  
D. Zhuravel ◽  
V. Karpenko

A system of interacting relativistic bosons at finite temperatures and isospin densities is studied within the framework of the Skyrme­like mean­field model. The mean field contains both attractive and repulsive terms. The consideration is taken within the framework of the Canonical Ensemble and the isospin­density dependencies of thermodynamic quantities is obtained, in particular as the phase diagrams. It is shown that in such a system, in addition to the formation of a Bose­Einstein condensate, a liquid­gas phase transition is possible. We prove that the multi­boson system develops the Bose condensate for particles of high­density component only.


2021 ◽  
Vol 132 (1) ◽  
pp. 79-93
Author(s):  
M. A. Kuznetsov ◽  
A. B. Drovosekov ◽  
A. A. Fraerman

Abstract The magnetocaloric effect in nanosystems based on exchange-coupled ferromagnets with different Curie temperatures is calculated within the mean-field theory. Good agreement between the results of the mean-field theory and the Landau theory, valid near the critical phase transition temperature, is demonstrated for a flat-layered Fe/Gd/Fe structure. We show that a high magnetic cooling efficiency in this system is attainable in principle and prove the validity of the Maxwell relation, enabling an experimental verification of the predictions made. The theory developed for flat-layered structures is generalized to a granular medium.


1990 ◽  
Vol 258 (3) ◽  
pp. C563-C577 ◽  
Author(s):  
T. Yoshida ◽  
M. Dembo

We propose a quantitative model of the thermodynamics of hemoglobin in contact with its five major ligands (O2, CO2, Cl-, 2,3-bisphosphoglycerate, and H+). Our model incorporates the two-state formalism of J. Monod, J. Wyman, and J.P. Changeux (J. Mol. Biol. 12: 88-118, 1965) for treatment of quanternary transitions and also the mean field formalism of K. Linderstrom-Lang (C. R. Trav. Lab. Carlsberg Ser. Chim. 15: 1-30, 1924) for treatment of electrostatic interactions. On the basis of this approach, we develop an algorithm for the efficient computation of observable quantities, such as the occupancy of various ligand binding sites, and an objective statistical procedure for determining both maximum likelihood values and confidence limits of all the intrinsic thermodynamic parameters of hemoglobin. Finally, we show that the predictions of our theory are in good agreement with independent experimental observations.


2012 ◽  
Vol 190 ◽  
pp. 55-58 ◽  
Author(s):  
B.I. Reser ◽  
N.B. Melnikov ◽  
Vladimir I. Grebennikov

The problem of discontinuous phase transition in the dynamic spin-fluctuation theory is resolved by taking into account large anharmonic spin fluctuations and nonlocality of the mean Green function. The extended theory is applied to the calculation of magnetic properties of iron.


Sign in / Sign up

Export Citation Format

Share Document