Large-Scale Synthesis of Single Crystal Silver Nanowires by a Sodium Diphenylamine Sulfonate Reduction Process

2006 ◽  
Vol 6 (1) ◽  
pp. 231-234 ◽  
Author(s):  
Qi Liu ◽  
Hongjiang Liu ◽  
Jianmin Zhu ◽  
Yongye Liang ◽  
Zheng Xu ◽  
...  

Silver nanowires with high aspect ratios of up to more than 60 were synthesized on a large scale by the redox reaction between silver nitrate and sodium diphenylamine sulfonate at room temperature and in the absence of surfactant and hard-template and seed. When the molar ratio of reductant sodium diphenylamine sulfonate and silver nitrate ≤1, most products were all the nanowires. When the molar ratio increases to 2:1, silver nanowires and nanobelts were concomitantly formed. The redox product N, N′-diphenylbenzidinedisulfonate and sodium diphenylamine sulfonate all play an important role in the formation of silver nanostructures. The structure, morphology, and composition of the silver nanowires were characterized by the X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray energy dispersive microanalysis (EDX), and UV-Vis spectroscopy respectively. High-resolution transmission microscopy (HRTEM) and selected area electron diffraction (SAED) reveal the single-crystal nature of the silver nanowires.

2020 ◽  
Vol 10 (3) ◽  
pp. 5648-5655

Single phase ZnO nanostructures were synthesized by simple and low temperature solvothermal process from two different alkaline sources; Potassium hydroxide (KOH) and Sodium hydroxide (NaOH) with zinc acetate dihydrate (Zn(CH3COO)2∙2H2O) as precursor. This facile and rapid synthesis technique achieve high purity of Zinc oxide (ZnO) nanostructures on large scale negating the use of complex and high temperature routes. The synthesized particles were characterized by X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDX), Fourier Transform Infrared (FT-IR) Spectroscopy, Ultraviolet Visible (UV-Vis) spectroscopy and Brunauer-Emmett-Teller (BET) analysis. ZnO synthesized using KOH and NaOH exhibit wurtzite hexagonal and flake-like nanostructures with average crystallite size of 11.0 nm and 14.9 nm respectively. Surface area of 59.50 m2/g and 31.43 m2/g were determined for KOH and NaOH sources respectively. The optical absorption spectra of the two samples showed absorption bands of 367.70 and 365.30 nm. The results showed the effect of alkaline sources on the surface morphology, structural and optical properties of ZnO.


2003 ◽  
Vol 18 (5) ◽  
pp. 1188-1191 ◽  
Author(s):  
S. M. Zhou ◽  
Y. S. Feng ◽  
L. D. Zhang

Large-scale single-crystal cubic PbS nanorods were successfully achieved by using ultrasound irradiation in certain ethylenediamine tetraacetic acid (EDTA) solutions, particularly in the solution of Pb:EDTA = 1:1. The obtained PbS nanorods were characterized using x-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersed x-ray spectrometry, selected area electronic diffraction, and high-resolution transmission electron microscopy. The results reveal that the PbS nanorods with straight and uniform structure have a diameter of about 70–80 nm and length of about 1000 nm, where the growth mechanism is tentatively discussed. The successful synthesis of these cubic structure semiconductor PbS nanorods may open up new possibilities for using these materials as building blocks to create functional two-dimensional or three-dimensional nanostructured materials.


Author(s):  
J. M. Galbraith ◽  
L. E. Murr ◽  
A. L. Stevens

Uniaxial compression tests and hydrostatic tests at pressures up to 27 kbars have been performed to determine operating slip systems in single crystal and polycrystal1ine beryllium. A recent study has been made of wave propagation in single crystal beryllium by shock loading to selectively activate various slip systems, and this has been followed by a study of wave propagation and spallation in textured, polycrystal1ine beryllium. An alteration in the X-ray diffraction pattern has been noted after shock loading, but this alteration has not yet been correlated with any structural change occurring during shock loading of polycrystal1ine beryllium.This study is being conducted in an effort to characterize the effects of shock loading on textured, polycrystal1ine beryllium. Samples were fabricated from a billet of Kawecki-Berylco hot pressed HP-10 beryllium.


2020 ◽  
Vol 10 ◽  
pp. 184798042096688
Author(s):  
Galo Cárdenas-Triviño ◽  
Sergio Triviño-Matus

Metal colloids in 2-mercaptoethanol using nanoparticles (NPs) of iron (Fe), cobalt (Co), and nickel (Ni) were prepared by chemical liquid deposition method. Transmission electron microscopy, electron diffraction, UV-VIS spectroscopy, and scanning electron microscopy with electron dispersive X-ray spectroscopy characterized the resulting colloidal dispersions. The NPs exhibited sizes with ranges from 9.8 nm for Fe, 3.7 nm for Co, and 7.2 nm for Ni. The electron diffraction shows the presence of the metals in its elemental state Fe (0), Co (0), and Ni (0) and also some compounds FeO (OH), CoCo2S4, and NiNi2S4.


2003 ◽  
Vol 67 (6) ◽  
pp. 1243-1251 ◽  
Author(s):  
A. Lu ◽  
D. Zhao ◽  
J. Li ◽  
C. Wang ◽  
S. Qin

AbstractSmall domestic cooking furnaces are widely used in China. These cooking furnaces release SO2 gas and dust into the atmosphere and cause serious air pollution. Experiments were conducted to investigate the effects of vermiculite, limestone or CaCO3, and combustion temperature and time on desulphurization and dust removal during briquette combustion in small domestic cooking furnaces. Additives used in the coal are vermiculite, CaCO3 and bentonite. Vermiculite is used for its expansion property to improve the contact between CaCO3 and SO2 and to convey O2 into the interior of briquette; CaCO3 is used as a chemical reactant to react with SO2 to form CaSO4; and bentonite is used to develop briquette strength. Expansion of vermiculite develops loose interior structures, such as pores or cracks, inside the briquette, and thus brings enough oxygen for combustion and sulphation reaction. Effective combustion of the original carbon reduces amounts of dust in the fly ash. X-ray diffraction, optical microscopy, and scanning electron microscopy with energy dispersive X-ray analysis show that S exists in the ash only as anhydrite CaSO4, a product of SO2 reacting with CaCO3 and O2. The formation of CaSO4 effectively reduces or eliminates SO2 emission from coal combustion. The major factors controlling S retention are vermiculite, CaCO3 and combustion temperature. The S retention ratio increases with increasing vermiculite amount at 950°C. The S retention ratio also increases with increasing Ca/S molar ratio, and the best Ca/S ratio is 2-3 for most combustion. With 12 g of the original coal, 1 to 2 g of vermiculite, a molar Ca/S ratio of 2.55 by adding CaCO3, and some bentonite, a S retention ratio >65% can be readily achieved. The highest S retention ratio of 97.9% is achieved at 950°C with addition of 2 g of vermiculite, a Ca/S ratio of 2.55 and bentonite.


Synlett ◽  
2018 ◽  
Vol 30 (01) ◽  
pp. 54-58 ◽  
Author(s):  
Timothy Swager ◽  
Cagatay Dengiz ◽  
You-Chi Wu

We report the synthesis and characterization of iptycene–naphthazarin dyes by using a sequential Diels–Alder approach. The tautomerization of naphthazarin was used as the key step in the synthesis, with structures confirmed by single-crystal X-ray and NMR analysis. The systematic trends in electronic properties were investigated by UV/Vis spectroscopy. BF2 complexes of the dyes were prepared by reaction with BF3·OEt2 in CH2Cl2.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1777 ◽  
Author(s):  
Md. Mahiuddin ◽  
Prianka Saha ◽  
Bungo Ochiai

A green synthesis of silver nanoparticles (AgNPs) was conducted using the stem extract of Piper chaba, which is a plant abundantly growing in South and Southeast Asia. The synthesis was carried out at different reaction conditions, i.e., reaction temperature, concentrations of the extract and silver nitrate, reaction time, and pH. The synthesized AgNPs were characterized by visual observation, ultraviolet–visible (UV-vis) spectroscopy, dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), energy dispersive x-ray (EDX), and Fourier transform infrared (FTIR) spectroscopy. The characterization results revealed that AgNPs were uniformly dispersed and exhibited a moderate size distribution. They were mostly spherical crystals with face-centered cubic structures and an average size of 19 nm. The FTIR spectroscopy and DLS analysis indicated that the phytochemicals capping the surface of AgNPs stabilize the dispersion through anionic repulsion. The synthesized AgNPs effectively catalyzed the reduction of 4-nitrophenol (4-NP) and degradation of methylene blue (MB) in the presence of sodium borohydride.


2020 ◽  
Author(s):  
Viktoria Leonhardt ◽  
Stefanie Fimmel ◽  
Ana-Maria Krause ◽  
Florian Beuerle

<div><div><div><p>A trigonal-bipyramidal covalent organic cage compound serves as an efficient host to form stable 1:1-complexes with C60 and C70. Fullerene encapsulation has been comprehensively studied by NMR and UV/Vis spectroscopy, mass spectrometry as well as single-crystal X-ray diffraction. Exohedral functionalization of encapsulated C60 via threefold Prato reaction revealed high selectivity for the symmetry-matched all-trans-3 addition pattern.</p></div></div></div>


2021 ◽  
Vol 55 (6) ◽  
Author(s):  
Trung Kien Pham ◽  
Tran Ngo Quan

In this paper, we report on synthesizing xonotlite, calcium silicate hydrate (CSH), via a hydrothermal reaction using rice husk from the Mekong Delta, Vietnam. The rice husks were burnt at 1000 °C for 3 h. Grey rice husk ash was collected, then mixed with Ca(OH)2 at a Ca/Si molar ratio of 1 : 1. This was followed by a hydrothermal reaction at 180 °C for 24 h and 48 h to obtain the xonotlite mineral. Before and after adsorption, 3-mm xonotlite pellets were thoroughly characterized using X-ray diffractometry (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and ultraviolet-visible (UV-VIS) spectroscopy. This material has potential application in chromium(III) removal during a chrome-plating process. The adsorption efficiency of the 3-mm pellet samples reached more than 76 % after 12 h.


2021 ◽  
Vol 68 (4) ◽  
pp. 1008-1015
Author(s):  
Yong Yuan ◽  
Xi-Kun Lu ◽  
Gao-Qi Zhou ◽  
Xiao-Yang Qiu

Three new copper(II) complexes, [Cu(LH)2]Br2 (1), [Cu(LH)2]NCS2 (2), and [Cu(LH)2](NO3)2 (3), where LH is the zwitterionic form of 2-bromo-6-((2-(isopropylamino)ethylimino)methyl)phenol (HL), were synthesized and characterized by elemental analysis, IR and UV-vis spectroscopy. The structures of the complexes were further confirmed by single crystal X-ray structure determination. All compounds are mononuclear copper(II) complexes. The Cu atoms in the complexes are coordinated by two imino N and two phenolate O atoms from two LH ligands, forming square planar coordination. The compounds were assayed for their antimicrobial activities.


Sign in / Sign up

Export Citation Format

Share Document