scholarly journals Synthesis and characterization of single phase ZnO nanostructures via solvothermal method: influence of alkaline source

2020 ◽  
Vol 10 (3) ◽  
pp. 5648-5655

Single phase ZnO nanostructures were synthesized by simple and low temperature solvothermal process from two different alkaline sources; Potassium hydroxide (KOH) and Sodium hydroxide (NaOH) with zinc acetate dihydrate (Zn(CH3COO)2∙2H2O) as precursor. This facile and rapid synthesis technique achieve high purity of Zinc oxide (ZnO) nanostructures on large scale negating the use of complex and high temperature routes. The synthesized particles were characterized by X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDX), Fourier Transform Infrared (FT-IR) Spectroscopy, Ultraviolet Visible (UV-Vis) spectroscopy and Brunauer-Emmett-Teller (BET) analysis. ZnO synthesized using KOH and NaOH exhibit wurtzite hexagonal and flake-like nanostructures with average crystallite size of 11.0 nm and 14.9 nm respectively. Surface area of 59.50 m2/g and 31.43 m2/g were determined for KOH and NaOH sources respectively. The optical absorption spectra of the two samples showed absorption bands of 367.70 and 365.30 nm. The results showed the effect of alkaline sources on the surface morphology, structural and optical properties of ZnO.

2006 ◽  
Vol 6 (1) ◽  
pp. 231-234 ◽  
Author(s):  
Qi Liu ◽  
Hongjiang Liu ◽  
Jianmin Zhu ◽  
Yongye Liang ◽  
Zheng Xu ◽  
...  

Silver nanowires with high aspect ratios of up to more than 60 were synthesized on a large scale by the redox reaction between silver nitrate and sodium diphenylamine sulfonate at room temperature and in the absence of surfactant and hard-template and seed. When the molar ratio of reductant sodium diphenylamine sulfonate and silver nitrate ≤1, most products were all the nanowires. When the molar ratio increases to 2:1, silver nanowires and nanobelts were concomitantly formed. The redox product N, N′-diphenylbenzidinedisulfonate and sodium diphenylamine sulfonate all play an important role in the formation of silver nanostructures. The structure, morphology, and composition of the silver nanowires were characterized by the X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray energy dispersive microanalysis (EDX), and UV-Vis spectroscopy respectively. High-resolution transmission microscopy (HRTEM) and selected area electron diffraction (SAED) reveal the single-crystal nature of the silver nanowires.


2021 ◽  
Vol 37 (6) ◽  
pp. 1447-1451
Author(s):  
Arpita Biswas

Synthesis of Zincoxide nanoparticles (ZnO NPs) with definite size and shape and their morphological characterization rationally is really a challenging aspect at present due to the ongoing demand of these nanosize particles for their divergent use in different field of science and technology. Reduction of Zinc acetate dihydrate by sodium hydroxide was performed to produce ZnO NPs by following precipitation method. Here the whole reaction was completed in aqueous medium in low temperature. To characterize the synthesized ZnO NPs some recent techniques like X-Ray diffraction study (XRD), Ultra-Violet Visible (UV-Vis) spectroscopy, Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Selected area electron diffraction (SAED) and Electron diffraction X-ray (EDX) were used systematically.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Anukorn Phuruangrat ◽  
Waipawan Kongpet ◽  
Oranuch Yayapao ◽  
Budsabong Kuntalue ◽  
Somchai Thongtem ◽  
...  

Sb doped ZnO nanostructures were synthesized by an ultrasonic-assisted method. Effect of Sb dopant on the structure, morphology, and composition of as-synthesized Sb doped ZnO nanostructures was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, and transmission electron microscopy (TEM). All samples were identified to wurtzite hexagonal ZnO structure. UV-visible spectra of the as-synthesized 3% Sb doped ZnO sample exhibit broad absorption bands at around 343 nm which is blue shift of 373 nm of pure ZnO. The photocatalytic activity was tested by decolorization of methylene blue (MB) solution under UV light. After 300 min irradiation, the degradation efficiencies were 56, 90, and 95% for ZnO, 1% Sb doped ZnO, and 3% Sb doped ZnO, respectively. The 3% Sb doped ZnO shows the highest photocatalytic activity than any other samples.


MRS Advances ◽  
2020 ◽  
Vol 5 (62) ◽  
pp. 3273-3282
Author(s):  
I. Cosme-Torres ◽  
M.G. Macedo-Miranda ◽  
S.M. Martinez-Gallegos ◽  
J.C. González-Juárez ◽  
G. Roa-Morales ◽  
...  

AbstractThe heterogeneous catalyst HTCMgFe was used in the degradation of the IC, through the heterogeneous photo-fenton treatment, this material in combination with H2O2 and UV light degraded the dye in 30 min at pH 3. As the amount of HTCMgFe increases the degradation it was accelerated because there are more active catalytic sites of Fe2+ on the surface of the material, which generates a greater amount of •OH radicals. The HTCMgFe was characterized by infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray energy dispersive elemental analysis (EDS). The UV-vis spectrum shows that the absorption bands belonging to the chromophore group of the IC disappear as the treatment time passes, indicating the degradation of the dye.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 76
Author(s):  
Chelladurai Karuppiah ◽  
Balamurugan Thirumalraj ◽  
Srinivasan Alagar ◽  
Shakkthivel Piraman ◽  
Ying-Jeng Jame Li ◽  
...  

Developing a highly stable and non-precious, low-cost, bifunctional electrocatalyst is essential for energy storage and energy conversion devices due to the increasing demand from the consumers. Therefore, the fabrication of a bifunctional electrocatalyst is an emerging focus for the promotion and dissemination of energy storage/conversion devices. Spinel and perovskite transition metal oxides have been widely explored as efficient bifunctional electrocatalysts to replace the noble metals in fuel cell and metal-air batteries. In this work, we developed a bifunctional catalyst for oxygen reduction and oxygen evolution reaction (ORR/OER) study using the mechanochemical route coupling of cobalt oxide nano/microspheres and carbon black particles incorporated lanthanum manganite perovskite (LaMnO3@C-Co3O4) composite. It was synthesized through a simple and less-time consuming solid-state ball-milling method. The synthesized LaMnO3@C-Co3O4 composite was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, Brunauer-Emmett-Teller (BET) analysis, X-ray diffraction spectroscopy, and micro-Raman spectroscopy techniques. The electrocatalysis results showed excellent electrochemical activity towards ORR/OER kinetics using LaMnO3@C-Co3O4 catalyst, as compared with Pt/C, bare LaMnO3@C, and LaMnO3@C-RuO2 catalysts. The observed results suggested that the newly developed LaMnO3@C-Co3O4 electrocatalyst can be used as a potential candidate for air-cathodes in fuel cell and metal-air batteries.


2020 ◽  
Vol 10 ◽  
pp. 184798042096688
Author(s):  
Galo Cárdenas-Triviño ◽  
Sergio Triviño-Matus

Metal colloids in 2-mercaptoethanol using nanoparticles (NPs) of iron (Fe), cobalt (Co), and nickel (Ni) were prepared by chemical liquid deposition method. Transmission electron microscopy, electron diffraction, UV-VIS spectroscopy, and scanning electron microscopy with electron dispersive X-ray spectroscopy characterized the resulting colloidal dispersions. The NPs exhibited sizes with ranges from 9.8 nm for Fe, 3.7 nm for Co, and 7.2 nm for Ni. The electron diffraction shows the presence of the metals in its elemental state Fe (0), Co (0), and Ni (0) and also some compounds FeO (OH), CoCo2S4, and NiNi2S4.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 825
Author(s):  
Saman Sargazi ◽  
Mohammad Reza Hajinezhad ◽  
Abbas Rahdar ◽  
Muhammad Nadeem Zafar ◽  
Aneesa Awan ◽  
...  

In this research, tin ferrite (SnFe2O4) NPs were synthesized via hydrothermal route using ferric chloride and tin chloride as precursors and were then characterized in terms of morphology and structure using Fourier-transform infrared spectroscopy (FTIR), Ultraviolet–visible spectroscopy (UV-Vis), X-ray power diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and Brunauer–Emmett–Teller (BET) method. The obtained UV-Vis spectra was used to measure band gap energy of as-prepared SnFe2O4 NPs. XRD confirmed the spinel structure of NPs, while SEM and TEM analyses disclosed the size of NPs in the range of 15–50 nm and revealed the spherical shape of NPs. Moreover, energy dispersive X-ray spectroscopy (EDS) and BET analysis was carried out to estimate elemental composition and specific surface area, respectively. In vitro cytotoxicity of the synthesized NPs were studied on normal (HUVEC, HEK293) and cancerous (A549) human cell lines. HUVEC cells were resistant to SnFe2O4 NPs; while a significant decrease in the viability of HEK293 cells was observed when treated with higher concentrations of SnFe2O4 NPs. Furthermore, SnFe2O4 NPs induced dramatic cytotoxicity against A549 cells. For in vivo study, rats received SnFe2O4 NPs at dosages of 0, 0.1, 1, and 10 mg/kg. The 10 mg/kg dose increased serum blood urea nitrogen and creatinine compared to the controls (P < 0.05). The pathology showed necrosis in the liver, heart, and lungs, and the greatest damages were related to the kidneys. Overall, the in vivo and in vitro experiments showed that SnFe2O4 NPs at high doses had toxic effects on lung, liver and kidney cells without inducing toxicity to HUVECs. Further studies are warranted to fully elucidate the side effects of SnFe2O4 NPs for their application in theranostics.


1989 ◽  
Vol 169 ◽  
Author(s):  
Winnie Wong‐Ng ◽  
Lawrence P. Cook ◽  
Michael D. Hill ◽  
Boris Paretzkin ◽  
E.R. Fuller

AbstractThe influence of the ionic size of the lanthanides R on melting relations of Ba2RCu3O6+x, where R=Y, Eu and Nd, was studied and compared with that of a high Tc superconductor mixed‐lanthanide phase Ba2(Y.75Eu.125Nd 125)Cu3O6+xThese materials have been characterized by a variety of methods including differential thermogravimetric analysis (DTA), scanning electron microscopy (SEM) with energy dispersive X‐ray spectroscopy (EDX) and X‐ray powder diffraction. Single phase samples of Ba2(Y.75Eu.125Nd.125)Cu3O6+x were annealed at 1004, 1040, 1052, 1060, 1078, 1107 and 1160°C and quenched into a helium gas container cooled by liquid nitrogen. The SEM micrographs of these samples showed the progressive chnages in features of the microstructures from sintering and grain growth through melting and then recrystallization from the melt. The addition of the SEM technique in conjunction with X‐ray diffraction has been helpful in the study of phase equilibria in this system.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1777 ◽  
Author(s):  
Md. Mahiuddin ◽  
Prianka Saha ◽  
Bungo Ochiai

A green synthesis of silver nanoparticles (AgNPs) was conducted using the stem extract of Piper chaba, which is a plant abundantly growing in South and Southeast Asia. The synthesis was carried out at different reaction conditions, i.e., reaction temperature, concentrations of the extract and silver nitrate, reaction time, and pH. The synthesized AgNPs were characterized by visual observation, ultraviolet–visible (UV-vis) spectroscopy, dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), energy dispersive x-ray (EDX), and Fourier transform infrared (FTIR) spectroscopy. The characterization results revealed that AgNPs were uniformly dispersed and exhibited a moderate size distribution. They were mostly spherical crystals with face-centered cubic structures and an average size of 19 nm. The FTIR spectroscopy and DLS analysis indicated that the phytochemicals capping the surface of AgNPs stabilize the dispersion through anionic repulsion. The synthesized AgNPs effectively catalyzed the reduction of 4-nitrophenol (4-NP) and degradation of methylene blue (MB) in the presence of sodium borohydride.


2008 ◽  
Vol 40 (2) ◽  
pp. 147-154
Author(s):  
A. Chekhovskii ◽  
T. Tomila ◽  
A. Ragulya ◽  
I. Timofeeva ◽  
A. Ivanchuk ◽  
...  

Powded CxNy coatings were deposited from acetonitrile on Ni, Si, and C surfaces at a voltage 500-2000 V by the electrochemical method. Electrolysis products were analyzed by IR spectroscopy, X-ray phase analysis and electron microscopy. According to FTIR data, at frequencies 1370 and 1530 cm-1, absorption bands characteristic for stretching C-N and C=N oscillations are observed. The obtained results indicate that the deposition process occurs in a different manner in each specific case, i.e., the kinetics of the electrode depends on the electrode material (Ni, Si, and C).


Sign in / Sign up

Export Citation Format

Share Document