Excimer Laser Irradiation Effects on Soft Magnetic Properties of Sputtered Iron Nitride Thin Films

2008 ◽  
Vol 8 (8) ◽  
pp. 4092-4095 ◽  
Author(s):  
Ranu Dubey ◽  
Ajay Gupta ◽  
D. M. Phase ◽  
Ram Prakash

Effect of pulse laser irradiation on soft magnetic properties of reactively sputtered iron nitride thin film has been studied. The as-deposited films exhibit large coercivity in the range 54 Oe to 148 Oe. Laser irradiation results in remarkable decrease in the coercivity of the films, the minimum value achieved being 8 Oe. X-ray diffraction measurements evidence structural relaxation in the films, resulting in densification. Surface roughness of the films exhibits only a marginal increase after laser irradiation. The observed decrease in the coercivity may be attributed to the relaxation of some quenched-in stresses associated with structural relaxation in the films. Irradiation as a function of energy density of laser pulse shows that an optimum energy density is required to achieve the best soft magnetic properties, which can vary from sample to sample.

2012 ◽  
Vol 482-484 ◽  
pp. 2365-2370 ◽  
Author(s):  
Qian Li Ma ◽  
Yong Bao ◽  
Guo Rui Zhang ◽  
Li Meng Yu ◽  
Ling Fei Ji ◽  
...  

The paper presents a laser irradiation method for rapidly fabricating Fe-based nanocrystalline alloys using Yb-doped fiber laser with a wavelength of 1070nm by overlapping irradiation of the heated areas. The samples are annular cores rolled with 20μm-thick and 3.2mm-wide belts of amorphous alloy Fe73.5Cu1Nb3Si13.5B9, which have internal diameter of 14 mm and external diameter of 20 mm. Every side of the samples is irradiated for 15 min by fiber laser. X-ray diffraction and transmission electron microscopy (TEM) are used for microstructure analysis and observation. The samples irradiated by a defocus beam with a diameter of 7.1mm through a lens have better soft magnetic properties than directly by an original collimating beam with a diameter of 6.7mm. The dimension of homogeneous ultrafine grains is about 10nm with a bcc α-Fe (Si), which is the foundation of the excellent soft magnetic property. Uniform laser irradiation and the appropriate laser power are necessary for optimum microstructure and soft magnetic properties.


2008 ◽  
Vol 570 ◽  
pp. 150-154 ◽  
Author(s):  
F. Saporiti ◽  
A.H. Kasama ◽  
B. Arcondo ◽  
Walter José Botta Filho ◽  
Claudio Shyinti Kiminami ◽  
...  

Fe-Si alloys have excellent soft magnetic properties, specially around 12 at% Si. However, its industrial application is limited because of the lack of ductility, which causes cracking during rolling operations for the fabrication of thin sheets. The reason of the brittleness of the high silicon alloys is a disorder/order reaction at low temperatures. The aim of this work is to analyze the effect of the addition of Aluminum on the crystalline structure of Fe-Si alloys. Samples with a chemical composition of Fe88Si12 and Fe87Si12Al1 (at%) were prepared by Spray Forming. The structure was studied by means of X-ray diffraction and Mössbauer Spectroscopy. The presence of the DO3 and α- Fe phases were observed


2016 ◽  
Vol 61 (1) ◽  
pp. 445-450
Author(s):  
K. Błoch

This paper presents studies relating to the structure, soft magnetic properties and thermal stability of the following bulk amorphous alloys: Fe61Co10Ti3-xY6+xB20 (x = 0, 1). On the basis of the performed X-ray diffraction studies and Mössbauer spectroscopy, it was found that investigated samples were amorphous in the as-cast state. The DSC curve obtained for Fe61Co10Ti2Y7B20 alloy exhibited one exothermic peak, while for the Fe61Co10Ti3Y6B20 sample, two peaks were distinguishable. The change in the chemical structure of the investigated alloys has a major effect on their soft magnetic properties; especially on coercivity and saturation magnetization. On the basis of the magnetization curves analysis, the spin wave stiffness parameter Dsp were determined for the investigated alloys.


2021 ◽  
Vol 1035 ◽  
pp. 773-777
Author(s):  
Sheng Lei ◽  
Shuai Li ◽  
Jun Sun ◽  
Ji Xiang Zhu ◽  
Ya Feng Liu ◽  
...  

Since Fe-based amorphous alloys are widely used in magnetic separators, sensors and other fields, it is of practical significance to carry out research on amorphous strips used in this field.The effects of annealing temperature on the soft magnetic properties of Fe70.43Nb10.77Si15.77Cu2.34B0.69 amorphous nanostrips with 25 μm and 28 μm thickness prepared by the single roll cold method were investigated at 20 and 300K.Five specimens were annealed at472.12K, 672.12K, 772.12K, 822.12Kand 872.12K, respectively, and their microstructure and magnetic properties were tested viametallographic microscopy, X-ray diffraction, and vibrating specimen magnetometer. At cryogenic temperatureof 20K, specimens annealed at 672,12K exhibited the best magnetic properties, including the coercive forceof8.1265A/m, saturation magnetic induction intensity of1.4351T,and its residual value of 0.2462T. The comparative analysis of experimental results obtained strongly indicates that the soft magnetic properties of the amorphous alloy are significantly improved by the particular annealing treatment.


2021 ◽  
Vol 63 (7) ◽  
pp. 834
Author(s):  
Н.В. Ершов ◽  
Ю.П. Черненков ◽  
В.А. Лукшина ◽  
О.П. Смирнов ◽  
Д.А. Шишкин

A dependence of the soft magnetic properties of the Fe73.5Si13.5Nb3Cu1B9 alloy on the temperature of annealing (Tan) carried out in air for 2 hours at temperatures from 520 to 620°C was investigated. It was shown that with Tan increasing, the magnetic hysteresis loop broadens significantly and becomes more inclined, and the Curie temperature of the amorphous matrix surrounding the α-FeSi nanocrystals decreases. The atomic structure and phase composition of the alloy samples were investigated by X-ray diffraction in transmission geometry. After annealing at temperatures of up to 580°C, nanocrystals contain predominantly D03 phase (Fe3Si stoichiometry) and have average size of about 7 nm. Their relative fraction in the alloy increases as the temperature increases due to the additional diffusion of iron from the matrix into the nanocrystals. After annealing at Tan ≥ 600°C, the average size of the nanocrystals increases, and reflections of iron boride crystals appear in the diffractograms. The deterioration of the soft magnetic properties of the Fe73.5Si13.5Nb3Cu1B9 nanocrystalline alloy, when the annealing temperature rises from 520 to 580°C, is explained by a decrease in the silicon concentration in Fe-Si nanocrystals, which leads to a growth of the constant of the magnetocrystalline anisotropy.


2014 ◽  
Vol 116 (5) ◽  
pp. 054904 ◽  
Author(s):  
Amir Hossein Taghvaei ◽  
Mihai Stoica ◽  
Ivan Kaban ◽  
Jozef Bednarčik ◽  
Jürgen Eckert

1998 ◽  
Vol 22 (4_1) ◽  
pp. 186-189
Author(s):  
M. Matsumoto ◽  
A. Morisako ◽  
Y. Mutoh

Sign in / Sign up

Export Citation Format

Share Document