Nanocrystallization of Fe-Based Amorphous Alloys Fe73.5Cu1Nb3Si13.5B9 by Yb-Doped Fiber Laser Overlapping Irradiation

2012 ◽  
Vol 482-484 ◽  
pp. 2365-2370 ◽  
Author(s):  
Qian Li Ma ◽  
Yong Bao ◽  
Guo Rui Zhang ◽  
Li Meng Yu ◽  
Ling Fei Ji ◽  
...  

The paper presents a laser irradiation method for rapidly fabricating Fe-based nanocrystalline alloys using Yb-doped fiber laser with a wavelength of 1070nm by overlapping irradiation of the heated areas. The samples are annular cores rolled with 20μm-thick and 3.2mm-wide belts of amorphous alloy Fe73.5Cu1Nb3Si13.5B9, which have internal diameter of 14 mm and external diameter of 20 mm. Every side of the samples is irradiated for 15 min by fiber laser. X-ray diffraction and transmission electron microscopy (TEM) are used for microstructure analysis and observation. The samples irradiated by a defocus beam with a diameter of 7.1mm through a lens have better soft magnetic properties than directly by an original collimating beam with a diameter of 6.7mm. The dimension of homogeneous ultrafine grains is about 10nm with a bcc α-Fe (Si), which is the foundation of the excellent soft magnetic property. Uniform laser irradiation and the appropriate laser power are necessary for optimum microstructure and soft magnetic properties.

2013 ◽  
Vol 320 ◽  
pp. 83-87 ◽  
Author(s):  
Yue Gu ◽  
Yue Sheng Chao

The stability and the soft magnetic properties of amorphous Fe52Co34Hf7B6Cu1 alloys have been investigated in this paper. Amorphous Fe52Co34Hf7B6Cu1 alloys ribbons are prepared by single-roller-quenching method. The differential thermal analysis (DTA), X-ray diffraction (XRD), Mössbauer Spectroscopy, transmission electron microscope (TEM) and vibrating sample magnetometer (VSM) were used for characterizing microstructures, soft magnetic properties, and evaluating the influence of adding manners of B on the stability of as-quenched specimens. The XRD curve shows a wide dispersion of peak, the TEM diffraction ring was dispersed cyclic, the pattern of the matrix was homogeneous, and the Mössbauer spectrum of as-quenched alloy presents a typical broadened and overlapped sextet, which confirms the as-quenched alloy in fully amorphous state. The DTA results showed the activation energy of Fe52Co34Hf7B6Cu1 alloy is 299.7KJ/mol. When pure B is replaced by FeB in preparing amorphous Fe52Co34Hf7B6Cu1 alloys, the activation energy reduced to 293.3 KJ/mol,and the soft magnetic property is decline according VSM results.


2008 ◽  
Vol 8 (8) ◽  
pp. 4092-4095 ◽  
Author(s):  
Ranu Dubey ◽  
Ajay Gupta ◽  
D. M. Phase ◽  
Ram Prakash

Effect of pulse laser irradiation on soft magnetic properties of reactively sputtered iron nitride thin film has been studied. The as-deposited films exhibit large coercivity in the range 54 Oe to 148 Oe. Laser irradiation results in remarkable decrease in the coercivity of the films, the minimum value achieved being 8 Oe. X-ray diffraction measurements evidence structural relaxation in the films, resulting in densification. Surface roughness of the films exhibits only a marginal increase after laser irradiation. The observed decrease in the coercivity may be attributed to the relaxation of some quenched-in stresses associated with structural relaxation in the films. Irradiation as a function of energy density of laser pulse shows that an optimum energy density is required to achieve the best soft magnetic properties, which can vary from sample to sample.


2011 ◽  
Vol 287-290 ◽  
pp. 2351-2355 ◽  
Author(s):  
Guo Rui Zhang ◽  
Yong Bao ◽  
Qian Li Ma ◽  
Li Meng Yu ◽  
Ling Fei Ji ◽  
...  

Continuous CO2laser irradiation is exploited to realize nanocrystallization of Fe based amorphous alloys Fe73.5Cu1Nb3Si13.5B9by overlapping of the heated areas, and to get homogeneous ultrafine grains of about 10nm with a bcc α-Fe(Si) structure, which is the foundation of the excellent soft magnetic property. X-ray diffraction and transmission electron microscopy(TEM) are used for microstructure analysis and observation, and the results show that irradiation power of 71w~99w gives the heat shock to the transformation from the metastable amorphous state to crystallized state, and proper time of about 20~30 seconds is necessary for optimum microstructure and soft magnetic properties.


2007 ◽  
Vol 130 ◽  
pp. 171-174 ◽  
Author(s):  
Z. Stokłosa ◽  
G. Badura ◽  
P. Kwapuliński ◽  
Józef Rasek ◽  
G. Haneczok ◽  
...  

The crystallization and optimization of magnetic properties effects in FeXSiB (X=Cu, V, Co, Zr, Nb) amorphous alloys were studied by applying X-ray diffraction methods, high resolution transmission electron microscopy (HRTEM), resistometric and magnetic measurements. The temperatures of the first and the second stage of crystallization, the 1h optimization annealing temperature and the Curie temperature were determined for different amorphous alloys. Activation energies of crystallization process were obtained by applying the Kissinger method. The influence of alloy additions on optimization effect and crystallization processes was carefully examined.


2008 ◽  
Vol 570 ◽  
pp. 150-154 ◽  
Author(s):  
F. Saporiti ◽  
A.H. Kasama ◽  
B. Arcondo ◽  
Walter José Botta Filho ◽  
Claudio Shyinti Kiminami ◽  
...  

Fe-Si alloys have excellent soft magnetic properties, specially around 12 at% Si. However, its industrial application is limited because of the lack of ductility, which causes cracking during rolling operations for the fabrication of thin sheets. The reason of the brittleness of the high silicon alloys is a disorder/order reaction at low temperatures. The aim of this work is to analyze the effect of the addition of Aluminum on the crystalline structure of Fe-Si alloys. Samples with a chemical composition of Fe88Si12 and Fe87Si12Al1 (at%) were prepared by Spray Forming. The structure was studied by means of X-ray diffraction and Mössbauer Spectroscopy. The presence of the DO3 and α- Fe phases were observed


2016 ◽  
Vol 61 (1) ◽  
pp. 445-450
Author(s):  
K. Błoch

This paper presents studies relating to the structure, soft magnetic properties and thermal stability of the following bulk amorphous alloys: Fe61Co10Ti3-xY6+xB20 (x = 0, 1). On the basis of the performed X-ray diffraction studies and Mössbauer spectroscopy, it was found that investigated samples were amorphous in the as-cast state. The DSC curve obtained for Fe61Co10Ti2Y7B20 alloy exhibited one exothermic peak, while for the Fe61Co10Ti3Y6B20 sample, two peaks were distinguishable. The change in the chemical structure of the investigated alloys has a major effect on their soft magnetic properties; especially on coercivity and saturation magnetization. On the basis of the magnetization curves analysis, the spin wave stiffness parameter Dsp were determined for the investigated alloys.


2007 ◽  
Vol 558-559 ◽  
pp. 975-978
Author(s):  
L.V. Tho ◽  
K.E. Lee ◽  
Cheol Gi Kim ◽  
Chong Oh Kim ◽  
W.S. Cho

Nanocrystalline CoFeHfO thin films have been fabricated by RF sputtering method. Co52Fe23Hf10O15 thin film is observed, exhibit good magnetic properties with magnetic coercivity (Hc) of 0.18 Oe; anisotropy fild (Hk) of 49 Oe; saturation magnetization (4лMs) of 21 kG, and electrical resistivity (ρ) of 300 01cm. The frequency response of permeability of the film is excellent. The effect of microstructure on the electrical and magnetic properties of thin film was studied using X-ray diffraction (XRD) analysis and conventional transmission electron microscopy (TEM). The results showed that excellent soft magnetic properties were associated with granular nannoscale grains of α-CoFe and α-Co(Fe) phases.


2010 ◽  
Vol 163 ◽  
pp. 165-168 ◽  
Author(s):  
Ryszard Nowosielski ◽  
Rafał Babilas ◽  
Grzegorz Dercz ◽  
Lucjan Pająk

The work presents a crystallization process of Fe-based amorphous alloy by characterization of the influence of annealing temperature on structural changes and magnetic properties of Fe72B20Si4Nb4 metallic glass. The studies were performed on the samples in the form of ribbons and rods. Crystallization behaviour of the studied alloy was examined by X-ray diffraction (XRD) and transmission electron microscopy (TEM) methods. The studies of soft magnetic properties of tested material involved magnetic permeability, saturation induction, coercive field and magnetic after-effects measurements.


2013 ◽  
Vol 464 ◽  
pp. 83-88
Author(s):  
Jitendra Singh ◽  
Arvind K. Singh ◽  
Sanjeev K. Gupta ◽  
J. Akhtar

nanocomposite [(Co91.5Zr8.5)- or CZN films has been prepared by reactive co-sputter deposition method. Nitrogen content plays key role to tune soft magnetic properties. Experimental observation shows that, non-magnetic nitrogen content enhances magnetization and reduces coercivity. The nanostructure is composed of Co nanoclusters embedded in CoN/ZrN matrix, revealed by high resolution transmission electron microscope study. The d-spacing of single Co nanocluster was found to be ~0.22nm corresponding to (002) phase of Cobalt. X-ray diffraction result is in agreement with cubic (400) and (622) phase of CoZr. High electrical resistivity ρs~108μΩ-cm attained corresponding to 16% N2content films. Hysteresis loop squareness depends on film thickness and coercivity squareness (S*)~0.84, obtained for ~250nm film thickness. A correlated composite nanostructure evolution is responsible for nitrogen induced magnetization and, suggests that film properties can tuned by controlling nitrogen content, in CoN/ZrN composite matrix.


2016 ◽  
Vol 697 ◽  
pp. 303-306
Author(s):  
Guo Jun Li ◽  
Yun Hui Mei ◽  
Feng Hou

Fe-Ni@ SiO2core–shell structured micrometer spherical particles with nanometer thick SiO2 shell were fabricated by a facile wet chemical process, their compositions and mechanisms were investigated using x-ray diffraction and Fourier transform of infra-red spectra, and their microstructures and magnetic properties were analyzed by high-resolution transmission electron microscopy and vibrating sample magnetometer. The structure of the synthesized SiO2-coated Fe-Ni alloy particles varied with adding TEOS contents. As-prepared Fe-Ni@SiO2 composites exhibit typical soft magnetic properties. Their highest saturation magnetization approximately linear decreases from 176 emu g−1for pure Fe-Ni alloy powders to 121 emu g−1for the coated powders with 20nm amorphous silica layers, but the coercivity of all different thickness SiO2-coated Fe-Ni alloy powders maintains in the range of about 25 Oe.


Sign in / Sign up

Export Citation Format

Share Document