Inverted Planar Perovskite Solar Cells Based on NiOx Nano Film with Enhanced Efficiency and Stability

2020 ◽  
Vol 20 (3) ◽  
pp. 1892-1898 ◽  
Author(s):  
Kejie Dai ◽  
Xuan Zhao

The organometal halide perovskite (OHP) materials have attracted much attention throughout the world due to their superb optoelectronic properties. Tremendous progress has been made in the OHP based solar cells with increased efficiency from 3.8% to 24.2% within the last decade, benefiting from efforts in the photovoltaic field. However, all the OHP solar cells with highest efficient are based on a normal mesoporous structure with TiO2 at the bottom, which needs high temperature process. The inverted planar structure OHP solar cells based on PEDOT:PSS suffer from low efficiency (lower than 15%) and inferior stability due to degradation of PEDOT:PSS in ambient air. Herein, we employed sol–gel method to fabricate a NiOx nano film as the hole transporting layer for inverted OHP solar cells. The device performance based on PEDOT:PSS and NiOx were systematically investigated. It was found that the perovskite films on NiOx film had larger grain size and thus lower defects) density. The Capacitance–Voltage measurement indicated that the device based on NiOx exhibited larger built-in potential, which significantly enhanced the open-circuit potential of the OHP solar cells. Furthermore, the solar cell based on NiOx nano film exhibited excellent stability compared with the PEDOT:PSS based device, due to robust property of NiOx in ambient air.

Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2512
Author(s):  
Daming Zheng ◽  
Changheng Tong ◽  
Tao Zhu ◽  
Yaoguang Rong ◽  
Thierry Pauporté

During the past decade, the power conversion efficiency (PCE) of perovskite solar cells (PSCs) has risen rapidly, and it now approaches the record for single crystal silicon solar cells. However, these devices still suffer from a problem of stability. To improve PSC stability, two approaches have been notably developed: the use of additives and/or post-treatments that can strengthen perovskite structures and the use of a nontypical architecture where three mesoporous layers, including a porous carbon backcontact without hole transporting layer, are employed. This paper focuses on 5-ammonium valeric acid iodide (5-AVAI or AVA) as an additive in methylammonium lead iodide (MAPI). By combining scanning electron microscopy (SEM), X-ray diffraction (XRD), time-resolved photoluminescence (TRPL), current–voltage measurements, ideality factor determination, and in-depth electrical impedance spectroscopy (EIS) investigations on various layers stacks structures, we discriminated the effects of a mesoscopic scaffold and an AVA additive. The AVA additive was found to decrease the bulk defects in perovskite (PVK) and boost the PVK resistance to moisture. The triple mesoporous structure was detrimental for the defects, but it improved the stability against humidity. On standard architecture, the PCE is 16.9% with the AVA additive instead of 18.1% for the control. A high stability of TiO2/ZrO2/carbon/perovskite cells was found due to both AVA and the protection by the all-inorganic scaffold. These cells achieved a PCE of 14.4% in the present work.


2018 ◽  
Vol 67 ◽  
pp. 01010
Author(s):  
Alfonsina Abat Amelenan Torimtubun ◽  
Anniza Cornelia Augusty ◽  
Eka Maulana ◽  
Lusi Ernawati

Indonesia is located along the equator lines with the high intensity of solar radiation averaging about 4.5 kWh of electrical energy/day. This potential leads to the selfsustaining energy possibility fulfilling the electricity needs. Due to their unique electronic structures and high-cost merit over the existing commercial PV technologies, perovskite solar cells (PSCs) have emerged as the next-generation photovoltaic candidate. Their highest power efficiency can be achieved of up to 22.1% in the last 5-6 years. However, this high efficiency came from CH3NH3PbI3 materials which contain lead, a toxic material. Herein calcium titanate (CT) as a lead-free perovskite material were synthesized through sintering of calcium carbonate (CaCO3) and titanium oxide (TiO2) by the sol-gel method. CT powders were characterized by SEM, XRF, FTIR and XRD then applied it onto the mesoporous heterojunction PSCs, with a device architecture ITO/TiO2/CaTiO3/C/ITO. By manipulating the raw material stoichiometry and heating temperature in the synthesis of CaTiO3, the device shows the highest power conversion efficiency (PCE) of 2.12%, shortcircuit current density (JSC) of 0.027 mA cm-2, open circuit voltage (VOC) of 0.212 V and fill factor (FF) of 53.90%. This sample can be an alternative way to create lead-free, largescale, and low-cost perovskite solar cells.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1227 ◽  
Author(s):  
Byung Kim ◽  
Woongsik Jang ◽  
Dong Wang

Nickel oxide (NiOx)–based perovskite solar cells (PSCs) have recently gained considerable interest, and exhibit above 20% photovoltaic efficiency. However, the reported syntheses of NiOx sol-gel used toxic chemicals for the catalysts during synthesis, which resulted in a high-temperature annealing requirement to remove the organic catalysts (ligands). Herein, we report a facile “NiOx sol-gel depending on the chain length of various solvents” method that eschews toxic catalysts, to confirm the effect of different types of organic solvents on NiOx synthesis. The optimized conditions of the method resulted in better morphology and an increase in the crystallinity of the perovskite layer. Furthermore, the use of the optimized organic solvent improved the absorbance of the photoactive layer in the PSC device. To compare the electrical properties, a PSC was prepared with a p-i-n structure, and the optimized divalent alcohol-based NiOx as the hole transport layer. This improved the charge transport compared with that for the typical 1,2-ethanediol (ethylene glycol) used in earlier studies. Finally, the optimized solvent-based NiOx enhanced device performance by increasing the short-circuit current density (Jsc), open-circuit voltage (Voc), and fill factor (FF), compared with those of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)–based devices.


2021 ◽  
Vol 65 (2) ◽  
Author(s):  
Hamed Moeini Alishah ◽  
Fatma Pinar Gokdemir Choi ◽  
Ugur Deneb Menda ◽  
Cihangir Kahveci ◽  
Macide Canturk Rodop ◽  
...  

Abstract. Bathocuproine (BCP) (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) is a well-known material that is employed as a hole-blocking layer between electron transport layer (ETL) and metal electrode in perovskite solar cells. It has been demonstrated that the use of BCP as a buffer layer between the ETL and the metal electrode in perovskite solar cells is highly beneficial. In literature, BCP is coated using vacuum processing techniques. Vacuum processing techniques require more energy and cost-effective processing conditions. In this work, we used BCP layers processed through wet processing techniques using sol-gel method with different concentrations. We achieved a short circuit current density (Jsc) of 16.1 mA/cm2 and an open circuit voltage (Voc) of 875 mV were acquired and a fill factor (FF) of 0.37 was calculated for perovskite solar cells without a BCP layer leading to a power conversion efficiency (PCE) of 5.32 % whereas Jsc of 19 mA/cm2, Voc of 990 mV were achieved and a FF of 0.5 was calculated for perovskite solar cells employing BCP layers with concentration of 0.5 mg/ml and spin cast at 4000 rpm, leading to a PCE of 9.4 %. It has been observed that the use of a BCP layer with an optimized concentration led to an improved device performance with an increase of 77 % in PCE in ambient air under high humidity conditions for planar structure perovskite solar cells in the configuration of ITO/NiOx/MAPbI3/PCBM/BCP/Ag.  Resumen. Batocuproina (BCP) (2,9-dimetil-4,7-difenil-1,10-fenantrolina) es un material que se emplea como capa de bloqueo de huecos entre la capa transportadora de electrones (ETL) y el electrodo metálico en celdas solares basados en perovskitas. Se ha demostrado que el uso de BCP como capa amortiguadora entre el ETL y el electrodo metálico en las celdas solares de perovskita es beneficioso. Comúnmente el BCP se recubre mediante técnicas de procesamiento al vacío, las cuales requieren altos costos energéticos. En este trabajo utilizamos capas de BCP procesadas mediante técnicas de procesamiento húmedo utilizando el método sol-gel. Logramos una densidad de corriente de cortocircuito (Jsc) de 16.1 mA / cm2 y un voltaje de circuito abierto (Voc) de 875 mV y se calculó un factor de llenado (FF) de 0.37 para las celdas solares de perovskita sin una capa de BCP lo que conduce a una eficiencia de conversión de energía (PCE) de 5.32%. Para celdas solares de perovskita que emplean capas de BCP con concentración de 0.5 mg/ml y centrifugado a 4000 rpm el valor de Jsc fue de 19 mA / cm2, se lograron Voc de 990 mV y se calculó un FF de 0.5, lo que lleva a un PCE del 9,4%. Se observó que el uso de una capa de BCP con concentración optimizada puede conducir a un rendimiento mejorado del dispositivo con un aumento del 77% en PCE en el aire ambiente, en condiciones de alta humedad, para celdas solares de perovskita de estructura plana en la configuración de ITO / NiOx / MAPbI3 / PCBM / BCP / Ag.


Coatings ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 461 ◽  
Author(s):  
Masaya Taguchi ◽  
Atsushi Suzuki ◽  
Takeo Oku ◽  
Sakiko Fukunishi ◽  
Satoshi Minami ◽  
...  

Perovskite solar cells, in which decaphenylcyclopentasilane (DPPS) layers were formed on the surface of the perovskite layer, were fabricated, and the influence on photovoltaic characteristics was investigated. The devices were fabricated by a spin-coating technique, and the surface morphology and crystal structures were investigated by scanning electron microscopy and X-ray diffraction. By adding the DPPS, the fill factor and open circuit voltage were increased, and the photoelectric conversion efficiency was improved. A stability test in ambient air was carried out for seven weeks, and the photoelectric conversion efficiencies were remarkably improved for the devices with DPPS.


2016 ◽  
Vol 8 (49) ◽  
pp. 33899-33906 ◽  
Author(s):  
Tiefeng Liu ◽  
Fangyuan Jiang ◽  
Fei Qin ◽  
Wei Meng ◽  
Youyu Jiang ◽  
...  

2014 ◽  
Vol 7 (8) ◽  
pp. 2614-2618 ◽  
Author(s):  
Seungchan Ryu ◽  
Jun Hong Noh ◽  
Nam Joong Jeon ◽  
Young Chan Kim ◽  
Woon Seok Yang ◽  
...  

The voltage output of perovskite solar cells is found to be dependent on both the energy level of perovskite itself as a solar absorber and hole transporting materials.


2018 ◽  
Vol 11 (02) ◽  
pp. 1850035 ◽  
Author(s):  
Zhixin Zhang ◽  
Shuqun Chen ◽  
Pingping Li ◽  
Hongyi Li ◽  
Junshu Wu ◽  
...  

This paper reports on the fabrication of CuOx films to be used as hole transporting layer (HTL) in CH3NH3PbI3 perovskite solar cells (PSCs). Ultra-thin CuOx coatings were grown onto FTO substrates for the first time via aerosol-assisted chemical vapor deposition (AACVD) of copper acetylacetonate in methanol. After incorporating into the PSCs prepared at ambient air, a highest power conversion efficiency (PCE) of 8.26% with HTL and of 3.34% without HTL were achieved. Our work represents an important step in the development of low-cost CVD technique for fabricating ultra-thin metal oxide functional layers in thin film photovoltaics.


Sign in / Sign up

Export Citation Format

Share Document