One-Pot Hydrothermal Synthesis of g-C3N4/BiPO4 Nanocomposites with Significant Photocatalytic Activity

2020 ◽  
Vol 20 (5) ◽  
pp. 3047-3052 ◽  
Author(s):  
Zhen-Zhao Pei ◽  
Pei Wang ◽  
Chao-Yang Li ◽  
Xiao-Liang Li ◽  
Yong-Wu He ◽  
...  

The g-C3N4/BiPO4 composites have been successfully synthesized via a one-pot hydrothermal process, which can be used to degrade the organic dyes (rhodamine B and methylene blue) under simulated sunlight irradiation. X-ray diffraction (XRD), scanning electron microscope (SEM), UV-Vis diffuse reflectance spectra and Fourier transform infrared (FTIR) spectroscopy have been employed to characterize the samples. The g-C3N4/BiPO4 composites exhibited higher photocatalytic activity than pure BiPO4. And the optimum photocatalyst shows the outstanding photocatalytic activity, which exhibited 99.0% and 86.6% decolorization rate of RhB and MB, respectively.

2014 ◽  
Vol 881-883 ◽  
pp. 1101-1104 ◽  
Author(s):  
Min Jie Zhou ◽  
Peng Cui

In this work, flower-like ZnIn2S4 microspheres were synthesized using a solvothermal method. The as-synthesized samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and ultraviolet-visible diffuse reflectance spectroscopy (DRS) techniques. The photocatalytic activity of the ZnIn2S4 microspheres was investigated. The ZnIn2S4 microspheres exhibit much higher photocatalytic activity than pure P25 TiO2.


2013 ◽  
Vol 864-867 ◽  
pp. 404-407
Author(s):  
Shi Zhao Kang ◽  
Tan Wu ◽  
Xiang Qing Li ◽  
Yi Lun Zhou ◽  
Jin Mu

Core-shell montmorillonite-TiO2 colloids were prepared in a hydrothermal process and characterized with transmission electron microscope, powder X-ray diffraction analysis, Brunauer-Emmett-Teller analysis and UV-vis spectra. Afterwards, their photocatalytic activity was investigated under UV irradiation using methyl orange as a model contaminant. In addition, the stability of the core-shell montmorillonite-TiO2 colloids was investigated by repeatedly performing methyl orange photocatalytic degradation experiments. The results indicate the as-prepared core-shell montmorillonite-TiO2 colloids are a highly efficient photocatalyst for the degradation of organic dyes in water. And this photocatalytic activity remains almost unchanged after eight successive cycles.


2017 ◽  
Vol 10 (02) ◽  
pp. 1750004 ◽  
Author(s):  
LiZhen Ren ◽  
DongEn Zhang ◽  
Xiao Yun Hao ◽  
Xin Xiao ◽  
Jun Yan Gong ◽  
...  

Bi2S3/SnS2 heterostructured photocatalysts were synthesized from BiOI, SnCl[Formula: see text]5H2O and NH2CSNH2 using an economic and simple hydrothermal method. The as-synthesized samples were characterized by X-ray diffraction, scanning electron microscopy and ultraviolet-visible diffuse reflectance spectroscopy. The photodegradation activities of the Bi2S3/SnS2 heterostructured photocatalysts were estimated by degrading rhodamine B under simulated sunlight supplied by irradiating with a 350[Formula: see text]W Xe lamp. Bi2S3/SnS2 photocatalysts were prepared using varying percentages of Bi2S3. The sample containing 13% Bi2S3 had the most efficient photocatalyst performance among the tested samples. The photocatalytic mechanism involves heterojunctions formed in the Bi2S3/SnS2, which promoted effective separation of photoinduced electrons and holes.


2011 ◽  
Vol 396-398 ◽  
pp. 768-771
Author(s):  
Huan Ying Li ◽  
Shu Li Bai ◽  
Yu Jiang Guan ◽  
Zi Bo Wang

The CdS/CNTs nanocomposites were prepared by a simple heating refluxing method, and the scattering of CdS on CNTs surface was controlled by a dropping way. The samples were characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM) and ultraviolet-visible diffuse reflectance spectroscope (UV-Vis) .The photocatalytic activity of the samples was tested in the degradation of Methylene blue dye wasterwater under simulated sunlight with 500w short arc xenon lamp. The results showed that the photocatalytic activity of CdS/CNTs composites was enhanced by controlling CdS scatter on CNTs surface, and the forbidden band width was appropriate lowered when CNTs was added, and the scatter of CdS on CNTs surface was uniform and the photocata-lytic activity was the highest when the mass ration of CdS with CNTs was 4:1.The CdS composites have good stability and potential industrial application.


2018 ◽  
Vol 20 (4) ◽  
pp. 66-74
Author(s):  
Mohamadreza Massoudinejad ◽  
Ali Paseban ◽  
Ahmadreza Yazdanbakhsh ◽  
Mohammad Reza Nabid

Abstract An N,S-codoped TiO2/Montmorillonite nanocomposite, as a photocatalyst, was synthesized in the sol-gel method and used for the degradation of ciprofloxacin (Cip) in an aqueous solution. N,S-codoped TiO2/Montmorillonte was characterized by powder X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), and X-ray fluorescence (XRF) analyzes. A central composite design (CCD) was used to optimize the variables for the removal of Cip by the N,S-codoped TiO2/Montmorillonite. A maximum decomposition of 92% of Cip was achieved in optimum conditions. The band gap value for the nanocomposite was 2.77 eV. Moreover, with the use of nanocomposite in the four consecutive runs, the final removal efficiency was 66%. The results show that the N,S-codoped TiO2/ Montmorillonite under simulated sunlight irradiation can be applied as an effective photocatalyst for the removal of Cip from aqueous solutions.


2012 ◽  
Vol 584 ◽  
pp. 406-410 ◽  
Author(s):  
S. Ershadul Haque ◽  
B. Ramdas ◽  
A. Sheela

Nano CdS has been prepared by solid state method at room temperature in the absence of any surfactants or dopants. It is characterized by powder X-ray diffraction, scanning electron microscopy (SEM) and diffuse reflectance spectroscopic techniques. It shows cubic structure with the particle size ranging about 20nm. It also exhibits a strong photocatalytic activity for the decomposition of methyl orange (MO) and rhodamine B (RB) under UV and sunlight irradiation. The result shows that CdS exerts greater photocatalytic activity for MO (83%) and RB (73%) under sunlight than UV light.


2012 ◽  
Vol 476-478 ◽  
pp. 1882-1888
Author(s):  
Ke Lei Zhang ◽  
Rui Jie Zhao ◽  
Qian Kun Lei ◽  
Yan Chun Hu

Spinel Zn2SnO4 photocatalysts have been prepared by the solid state reaction. as-prepared samples were characterized by power X-ray diffraction, scanning electron microscope, UV-vis diffuse reflectance spectroscopy and photocatalytic activity measurement. The results show that the reaction temperature have significant effects on the Zn2SnO4 photocatalytic activity . It has also been found that the distribution of the cations in Zn2SnO4 crystal lattice changes with the increase of calcination temperature, causing the local structural fine adjustment that associated with the photocatalytic properties.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Pengyu Dong ◽  
Yan Hao ◽  
Peiyang Gao ◽  
Entian Cui ◽  
Qinfang Zhang

Ag3PO4triangular prism was synthesized by a facile chemical precipitation approach by simply adjusting external ultrasonic condition. The as-synthesized Ag3PO4triangular prism was characterized by X-ray diffraction pattern (XRD), field emission scanning electron microscopy (SEM), fourier transform infrared (FTIR) spectra, and ultraviolet-visible diffuse reflectance (UV-vis DRS) absorption spectra. The photocatalytic activity of Ag3PO4triangular prism was evaluated by photodegradation of organic methylene blue (MB), rhodamine B (RhB), and phenol under visible light irradiation. Results showed that Ag3PO4triangular prism exhibited higher photocatalytic activity than N-doped TiO2and commercial TiO2(P25) under visible light irradiation.


2015 ◽  
Vol 68 (10) ◽  
pp. 1562 ◽  
Author(s):  
Fengjun Zhang ◽  
Guosheng Xiao ◽  
Wei Lu ◽  
Tianye Wang ◽  
Limin Xuan ◽  
...  

Eu-Doped Bi2O3/CeO2 composites were successfully synthesized by a facile sol–gel–calcination route. The as-prepared composites were prepared with different molar ratios of Bi/Ce/Eu by the sol–gel route, and then calcined at 500°C for 2 h. The photocatalytic efficiencies of all composites were tested by degradation of methyl orange (MO) under visible light irradiation. The result suggested that the best composite is the one that was prepared with a Bi/Ce/Eu mole ratio of 8 : 8 : 1, and achieved a MO degradation rate of nearly 98.5 % within 2 h of irradiation. The as-prepared composites were characterized by X-ray diffraction, scanning electron microscopy, inductively coupled plasma mass spectrometry, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, UV-visible diffuse reflectance spectroscopy, and photoluminescence spectroscopy. The X-ray diffraction and scanning electron microscopy results suggested that Eu doping may have led to some lattice distortion and particle aggregation that enhanced the photocatalytic activity of the photocatalyst. The UV-visible diffuse reflectance spectroscopy and photoluminescence spectroscopy results showed that Eu-doped Bi2O3/CeO2 exhibited higher visible light response properties and enhanced separation of the photogenerated electron–hole pairs, which is the main reason for the higher photocatalytic activity. In general, this study could provide a facile route to synthesize Eu-doped Bi2O3/CeO2 composites with enhanced photocatalytic activity by a sol–gel–calcination route for environmental purification.


MRS Advances ◽  
2020 ◽  
Vol 5 (61) ◽  
pp. 3141-3152
Author(s):  
Alma C. Chávez-Mejía ◽  
Génesis Villegas-Suárez ◽  
Paloma I. Zaragoza-Sánchez ◽  
Rafael Magaña-López ◽  
Julio C. Morales-Mejía ◽  
...  

AbstractSeveral photocatalysts, based on titanium dioxide, were synthesized by spark anodization techniques and anodic spark oxidation. Photocatalytic activity was determined by methylene blue oxidation and the catalytic activities of the catalysts were evaluated after 70 hours of reaction. Scanning Electron Microscopy and X Ray Diffraction analysis were used to characterize the catalysts. The photocatalyst prepared with a solution of sulfuric acid and 100 V presented the best performance in terms of oxidation of the dye (62%). The electric potential during the synthesis (10 V, low potential; 100 V, high potential) affected the surface characteristics: under low potential, catalyst presented smooth and homogeneous surfaces with spots (high TiO2 concentration) of amorphous solids; under low potential, catalyst presented porous surfaces with crystalline solids homogeneously distributed.


Sign in / Sign up

Export Citation Format

Share Document