Nanoscale Pore Structure Characteristics of Deep Coalbed Methane Reservoirs and Its Influence on CH4 Adsorption in the Linxing Area, Eastern Ordos Basin, China

2021 ◽  
Vol 21 (1) ◽  
pp. 43-56
Author(s):  
Xiang-Dong Gao ◽  
Yan-Bin Wang ◽  
Xiang Wu ◽  
Yong Li ◽  
Xiao-Ming Ni ◽  
...  

The high gas content of deep coal seams is a driving force for the exploration and development of deep coalbed methane (CBM). The nanoscale pores, which are the main spaces for adsorption and storage of CBM, are closely related to the burial depth. Based on integrated approaches of vitrinite reflectance (Ro), maceral composition, scanning electron microscope (SEM), proximate analysis, fluid inclusion test, low-temperature N2 adsorption–desorption, and CH4 isothermal adsorption, the nanoscale pore structure of coals recovered at depths from 650 to 2078 m was determined, and its influence on the CH4 adsorption capacity was discussed. The results show that the coal rank has a good linear relationship with the current burial depth of the coal seams; that is, the influences of the burial depth on the coals can be reflected by the influences of the coal rank on the coals. With the increase in the coal rank, the moisture and volatile content decrease, and the fixed carbon content increases. The variation in the pore volume and specific surface area with the increase in the coal rank can be divided into two stages: the rapid decline stage (when 0.75%<Ro < 1.0%), dominated by the compaction and gelatinization, and the slow decline stage (when 1.0%<Ro < 1.35%), characterized by the low stress sensitivity and the mass production of secondary pores. The percentage of micropores increases throughout the process. When 10 nm is taken as the boundary, the nanoscale pores show different fractal features. When Ro < 1.0%, the fractal dimension (FD) of the micropores is close to 3. When Ro > 1.0%, the FD of the micropores is close to 2. This indicates that with the increase in the degree of coalification, the surface of the micropores is simpler. The above results show that the gas adsorption capacity of coal first slightly decreases (when 0.75% < Ro < 1.0%) and then increases (when 1.0% < Ro < 1.35%), and the coincident results are shown in the Langmuir volume (VL) test results.

2017 ◽  
Vol 14 (5) ◽  
pp. 423-432 ◽  
Author(s):  
Peng Xia ◽  
Kunjie Li ◽  
Fangui Zeng ◽  
Xiong Xiao ◽  
Jianliang Zhang ◽  
...  

Purpose Pyrolysis for coal gas generation changes the composition, pore structure, permeability and adsorption capacity of coal. This work aims to discuss the utilization of coal pyrolysis on enhancing coalbed methane (CBM) production in the Gujiao area, Shanxi province, China. Design/methodology/approach This research was conducted mainly by the methods of thermogravimetry mass spectrometry (TG-MS) analysis, liquid nitrogen adsorption experiment and methane isothermal adsorption measurement. Findings The results can be concluded as that 400-700°C is the main temperature range for generating CH4. Pore volume and specific surface area increase with increasing temperature; however, the proportion of micro pore, transition pore and macro pore has no difference. The optimum temperature for enhancing CBM production should be letter than 600°C because the sedimentation of tar and other products will occupy some pores and fissures after 600°C. Originality/value Here in, to accurately recognize the suitable maximum temperature for heating development, a method enhancing CBM production, TG-MS, was adopted to analyze the products and the weight loss of coals with different ranks in the Gujiao area at temperature of 30-1,100°C. And then the pore structure, porosity, permeability, methane adsorption capacity and thermal maturity of coals during pyrolysis were investigated with increased temperature from 30°C to 750°C. On these bases, the favorable condition for enhancing CBM production and the thermal evolution of coal were recognized.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xun Zhao ◽  
Tao Feng ◽  
Ping Wang ◽  
Ze Liao

In order to grasp the effect of soft and hard coal pore structure on gas adsorption characteristics, based on fractal geometry theory, low-temperature nitrogen adsorption and constant temperature adsorption test methods are used to test the pore structure characteristics of soft coal and its influence on gas adsorption characteristics. We used box dimension algorithm to measure the fractal dimension and distribution of coal sample microstructure. The research results show that the initial nitrogen adsorption capacity of soft coal is greater than that of hard coal, and the adsorption hysteresis loop of soft coal is more obvious than that of hard coal. And the adsorption curve rises faster in the high relative pressure section. The specific surface area and pore volume of soft coal are larger than those of hard coal. The number of pores is much larger than that of hard coal. In particular, the superposition of the adsorption force field in the micropores and the diffusion in the mesopores enhance the adsorption potential of soft coal. Introducing the concept of adsorption residence time, it is concluded that more adsorption sites on the surface of soft coal make the adsorption and residence time of gas on the surface of soft coal longer. Fractal characteristics of the soft coal surface are more obvious. The saturated adsorption capacity of soft coal and the rate of reaching saturation adsorption are both greater than those of hard coal. The research results of this manuscript will provide a theoretical basis for in-depth analysis of the adsorption/desorption mechanism of coalbed methane in soft coal seams and the formulation of practical coalbed methane control measures.


2019 ◽  
Vol 7 (4) ◽  
pp. T843-T856
Author(s):  
Xinghua Wang ◽  
Arash Dahi Taleghani ◽  
Wenlong Ding

Characteristics of shale pore structures may play an important role in natural gas accumulation and consequently estimating the original gas in place. To determine the pore structure characteristics of Niutitang marine shale in the Sangzhi block, we carried out [Formula: see text] adsorption-desorption (LP-[Formula: see text]GA), [Formula: see text] adsorption (LP-[Formula: see text]GA), and methane isothermal adsorption on shale samples to reveal the pore size distribution (PSD) and its impact on the adsorption capacity. Results indicate that the Niutitang Shale is in stages of maturity and overmaturity with good organic matter, and they also indicate well-developed interparticle, intraparticle, and organic pores. Quartz and clay are found to be the main minerals, and the high illite content means that the Niutitang Shale is experiencing the later stage of clay mineral transformation. Various-sized shale pores are well-developed, and most of them are narrow and slit-like. For pores with diameters of 2–300 nm measured with LP-[Formula: see text]GA, mesopores (2–50 nm) contribute most of the total specific surface area (SSA) and total pore volume (TPV) in comparison to macropores (50–300 nm). For micropores ([Formula: see text]) tested by LP-[Formula: see text]GA, the PSD appears to be multimodal; shale pores of 0.50–0.90 nm diameter contribute most of the SSA and TPV. [Formula: see text]-SSA and [Formula: see text]-SSA indicate positive correlations with their corresponding TPV. The total organic matter (TOC) has good correlation with the SSA and TPV of micropores. The Langmuir volume positively correlates with the total SSA. Additionally, the TOC content has a good correlation with the Langmuir volume, which is consistent with the observation of well-developed fossils of diatoms and organic pores. As an important source of organic matter, more diatoms mean more organic matter, larger TOC values and quartz content, larger SSA and TPV of micropores, and, of course, stronger shale adsorption capacity. The results provide important guidance for the exploration and development of shale gas existing in the Sangzhi block.


2020 ◽  
Vol 38 (5) ◽  
pp. 1664-1679
Author(s):  
Aoxiang Zhang ◽  
Daiyong Cao ◽  
Yingchun Wei ◽  
Thomas E Rufford

Coal fines produced during drainage of coalbed methane reservoirs can affect the permeability of the coal reservoir and damage production facilities such as downhole pumps, shafts, and valves. Thus, to clarify the mechanism of coal fines output is very important to high production of coalbed methane. The characteristics of coal fines can be used to identify the sources of the coal fines and to develop reasonable means of controlling coal fines output. In this study, different coal fines characteristics were investigated to reveal the output mechanism of coal fines. The coal fines samples were collected from 16 coalbed methane wells, which located in Eastern Ordos Basin of China. And the wells are in different drainage stages. The coal fines samples were analyzed by using transmission light microscopy, reflection polarized optical microscopy, laser particle size analysis, X-ray diffraction, and scanning electron microscopy with energy dispersive X. The results show that the concentration of coal fines is in the range of 3–8% (volume percent). The sizes of the coal fine particles tended to be below 200 µm. The main components of pulverized coal are vitrinite and inorganic minerals and the average content of inorganic minerals account for 50.56% and the standard deviation is 0.0685. The morphology analysis results show that the shape of coal fines is different in different parts of the coalbed methane wells. The coal fines concentration increases with the increase in the thickness of the deformed coal, and decreases with the increase in the burial depth. The concentration of coal fines becomes higher with the increase of casing pressure and coal fines concentration increases with the increase of the variation of bottom hole pressure.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 81
Author(s):  
Hao Chen ◽  
Wenguang Tian ◽  
Zhenhong Chen ◽  
Qingfeng Zhang ◽  
Shu Tao

The Baode block on the eastern margin of the Ordos Basin is a key area for the development of low-rank coalbed methane (CBM) in China. In order to find out the genesis of CBM and its storage and seepage space in Baode block, the isotopic testing of gas samples was carried out to reveal the origin of CH4 and CO2, as well, mercury intrusion porosimetry, low temperature nitrogen adsorption, and X-ray CT tests were performed to characterize the pores and fractures in No. 4 + 5 and No. 8 + 9 coal seams. The results showed that the average volume fraction of CH4, N2, and CO2 is 88.31%, 4.73%, and 6.36%, respectively. No. 4 + 5 and No. 8 + 9 coal seams both have biogenic gas and thermogenic methane. Meanwhile, No. 4 + 5 and No. 8 + 9 coal seams both contain CO2 generated by coal pyrolysis, which belongs to organic genetic gas, while shallow CO2 is greatly affected by the action of microorganisms and belongs to biogenic gas. The average proportion of micropores, transition pores, mesopores, and macropores is 56.61%, 28.22%, 5.10%, and 10.07%, respectively. Samples collected from No. 4 + 5 coal seams have developed more sorption pores. Meanwhile, samples collected from No. 8 + 9 coal seams exhibited a relatively low degree of hysteresis (Hg retention), suggesting good pore connectivity and relatively high seepage ability, which is conducive to gas migration. The connected porosity of coal samples varies greatly, mainly depending on the relative mineral content and the proportion of connected pores.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Peng Feng ◽  
Song Li ◽  
Dazhen Tang ◽  
Liangjun Wu ◽  
Yan Zhang ◽  
...  

Permeability is one of the important factors that affect the production efficiency of coalbed methane, and it is mainly controlled by in situ stress. Therefore, it is very essential to study the in situ stress and permeability for the extraction of coalbed methane. Based on the injection/falloff well test and in situ stress measurement of 35 coalbed methane wells in the Liulin area in the east of the Ordos basin, the correlations between initial reservoir pressure, in situ stress, lateral stress coefficient, permeability, and burial depth were determined. Finally, the distribution characteristics of in situ stress and its influence on permeability were analyzed systematically. The results show that with the increase of burial depth, the initial reservoir pressure and in situ stress both increase, while the lateral stress coefficient decreases. The permeability variation is related to the type of stress field in different burial depths, and its essence is the deformation and destruction of coal pore structures caused by stress. The distribution characteristics of in situ stress at different depths and its effect on permeability are as follows: at depths < 800   m , the horizontal principal stress is dominant ( σ H ≥ σ v > σ h ) and the permeability is a simple decreasing process with the increase of the depth; at depths > 800   m , the vertical stress is dominant ( σ v ≥ σ H > σ h ). The permeability of most coal is very small due to the large in situ stresses in this depth zone. However, because of the stress release at the syncline axis, coal with high permeability is still possible at this depth zone. Due to the existence of high permeability data points at burial depth (>800 m) and the fitting relationship between permeability and vertical stress, the maximum and minimum horizontal principal stress is poor. However, the coal permeability and lateral stress coefficient show a good negative exponential relationship. This indicates that the lateral stress coefficient can be used to predict permeability better.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Xiaozhen Chen ◽  
Taotao Yan ◽  
Fangui Zeng ◽  
Yanjun Meng ◽  
Jinhua Liu

Methane adsorption capacity is an important parameter for coalbed methane (CBM) exploitation and development. Traditional examination methods are mostly time-consuming and could not detect the dynamic processes of adsorption. In this study, a modified low-field nuclear magnetic resonance (NMR) method that compensates for these shortcomings was used to quantitatively examine the methane adsorption capacity of seven medium-rank coals. Based on the typical T 2 amplitudes obtained from low-field NMR measurement, the volume of adsorbed methane was calculated. The results indicate that the Langmuir volume of seven samples is in a range of 18.9–31.85 m3/t which increases as the coal rank increases. The pore size in range 1-10 nm is the main contributor for gas adsorption in these medium-rank coal samples. Comparing the adsorption isotherms of these coal samples from the modified low-field NMR method and volumetric method, the absolute deviations between these two methods are less than 1.03 m3/t while the relative deviations fall within 4.76%. The absolute deviations and relative deviations decrease as vitrinite reflectance ( R o ) increases from 1.08% to 1.80%. These results show that the modified low-field NMR method is credible to measure the methane adsorption capacity and the precision of this method may be influenced by coal rank.


2021 ◽  
Vol 21 (1) ◽  
pp. 22-42
Author(s):  
Xiangchun Li ◽  
Zhongbei Li ◽  
Fan Zhang ◽  
Qi Zhang ◽  
Baisheng Nie ◽  
...  

Based on gas adsorption theory, high-pressure mercury intrusion (HPMI), low-temperature liquid nitrogen gas adsorption (LT-N2GA), CO2 adsorption, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and small-angle X-ray scattering (SAXS) techniques were used to analyze the pore structures of six coal samples with different metamorphisms in terms of pore volume, specific surface area (SSA), pore size distribution (PSD) and pore shape. Combined with the gas adsorption constant a, the influence and mechanism of the pore structure of different coal ranks on gas adsorption capacity were analyzed. The results show that there are obvious differences in the pore structure of coals with different ranks, which leads to different adsorption capacities. To a large extent, the pore shapes observed by SEM are consistent with the LT-N2GA isotherm analysis. The pore morphology of coal samples with different ranks is very different, indicating the heterogeneity among the coal surfaces. Adsorption analysis revealed that mesopore size distributions are multimodal and that the pore volume is mainly composed of mesopores of 2–15 nm. The adsorption capacity of the coal body micropores depends on the 0.6–0.9 nm and 1.5–2.0 nm aperture sections. The influence of coal rank on gas desorption and diffusion is mainly related to the difference in pore structure. The medium metamorphic coal sample spectra show that the number of peaks in the high-wavenumber segment is small and that it is greater in the high metamorphic coal. The absorption intensity of the C–H stretching vibration peak of naphthenic or aliphatic hydrocarbons varies significantly among the coal samples. Over a small range of angles, as the scattering angle increases, the scattering intensity of each coal sample gradually decreases, and as the degree of metamorphism increases, the scattering intensity gradually increases. That is, the degree of metamorphism of coal samples is directly proportional to the scattering intensity. The influence of coal rank on gas adsorption capacity is mainly related to the difference in pore structure. The gas adsorption capacity shows an asymmetric U-shaped relationship with coal rank. For higher rank coals (Vdaf < 15%), the gas adsorption consistently decreases significantly with increasing Vdaf. In the middle and low rank coal stages (Vdaf > 15%), it increases slowly with the increase of Vdaf. We believe that the results of this study will provide a theoretical basis and practical reference value for effectively evaluating coal-rock gas storage capacity, revealing the law of CBM enrichment and the development and utilization of CBM resources.


Sign in / Sign up

Export Citation Format

Share Document