Synthesis and Surface Coating of LiMn2O4 Nanorods for the Cathode of the Lithium-Ion Battery

2021 ◽  
Vol 21 (10) ◽  
pp. 5289-5295
Author(s):  
San Sim ◽  
Injun Hwang ◽  
Woosun Choi ◽  
Yongseon Kim

MnO2 nanorods are prepared using a hydrothermal method, and used as precursors for the synthesis of LiMn2O4 nanorod-based active material for the cathode of lithium-ion batteries. The effects of additives, pressure, reactant concentration in the solution, and reaction time during the hydrothermal synthesis on the morphology of MnO2 are examined. For the synthesis of the LiMn2O4 nanorods, two synthetic methods, hydrothermal processing of the MnO2 precursor in a Li-containing solution, and the solid-state reaction of the precursor with LiOH·H2O powder are tested. The morphological and electrochemical properties of the resulting materials are then analyzed. The rate and cycle performances of the LiMn2O4 nanorods are considerably improved by a composite coating of Li-ion-conductive Li2O–2B2O3 and electrically conductive carbon. Because the conductive properties of these coating materials can be obtained with low crystallinity of them, superior coating performance is attainable with relatively low-temperature of after heating, which is advantageous in preserving the morphology of LiMn2O4 nanorods.

2015 ◽  
Vol 15 (4) ◽  
pp. 301 ◽  
Author(s):  
Y.Y. Mamyrbayeva ◽  
R.E. Beissenov ◽  
M.A. Hobosyan ◽  
S.E. Kumekov ◽  
K.S. Martirosyan

<p>There are technical barriers for penetration market requesting rechargeable lithium-ion battery packs for portable devices that operate in extreme hot and cold environments. Many portable electronics are used in very cold (-40 °C) environments, and many medical devices need batteries that operate at high temperatures. Conventional Li-ion batteries start to suffer as the temperature drops below 0 °C and the internal impedance of the battery  increases. Battery capacity also reduced during the higher/lower temperatures. The present work describes the laboratory made lithium ion battery behaviour features at different operation temperatures. The pouch-type battery was prepared by exploiting LiCoO<sub>2</sub> cathode material synthesized by novel synthetic approach referred as Carbon Combustion Synthesis of Oxides (CCSO). The main goal of this paper focuses on evaluation of the efficiency of positive electrode produced by CCSO method. Performance studies of battery showed that the capacity fade of pouch type battery increases with increase in temperature. The experimental results demonstrate the dramatic effects on cell self-heating upon electrochemical performance. The study involves an extensive analysis of discharge and charge characteristics of battery at each temperature following 30 cycles. After 10 cycles, the battery cycled at RT and 45 °C showed, the capacity fade of 20% and 25% respectively. The discharge capacity for the battery cycled at 25 °C was found to be higher when compared with the battery cycled at 0 °C and 45 °C. The capacity of the battery also decreases when cycling at low temperatures. It was important time to charge the battery was only 2.5 hours to obtain identical nominal capacity under the charging protocol. The decrease capability of battery cycled at high temperature can be explained with secondary active material loss dominating the other losses.</p>


2010 ◽  
Vol 72 ◽  
pp. 299-304
Author(s):  
Alberto Varzi ◽  
Corina Täubert ◽  
Margret Wohlfahrt-Mehrens ◽  
Martin Kreis ◽  
Walter Schütz

The potential use of multi-walled carbon nanotubes (MWCNTs) produced by chemical vapour deposition (CVD) as a conductive agent for electrodes in Li-ion batteries has been investigated. LiNi0.33Co0.33Mn0.33O2 (NCM) has been chosen as active material for positive electrodes, and a nano-sized TiO2-rutile for the negative electrodes. The electrochemical performances of the electrodes were studied by galvanostatic techniques and especially the influence of the nanotubes on the rate capability and cycling stability has been evaluated. The addition of MWCNTs significantly enhanced the rate performances of both positive and negative electrodes and improved the capacity retention upon cycling. The obtained results demonstrated that the addition of MWCNTs in low amounts to the electrode composition enables an increase in both energy and power density of a Li-ion battery.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2203
Author(s):  
Hong Wang ◽  
Yuejin Ma ◽  
Wenming Zhang

Nanoscale Fe3O4-Sn@CNFs was prepared by loading Fe3O4 and Sn nanoparticles onto CNFs synthesized via electrostatic spinning and subsequent thermal treatment by solvothermal reaction, and were used as anode materials for lithium-ion batteries. The prepared anode delivers an excellent reversible specific capacity of 1120 mAh·g−1 at a current density of 100 mA·g−1 at the 50th cycle. The recovery rate of the specific capacity (99%) proves the better cycle stability. Fe3O4 nanoparticles are uniformly dispersed on the surface of nanofibers with high density, effectively increasing the electrochemical reaction sites, and improving the electrochemical performance of the active material. The rate and cycling performance of the fabricated electrodes were significantly improved because of Sn and Fe3O4 loading on CNFs with high electrical conductivity and elasticity.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2925
Author(s):  
Evgenii Beletskii ◽  
Valentin Ershov ◽  
Stepan Danilov ◽  
Daniil Lukyanov ◽  
Elena Alekseeva ◽  
...  

Materials with a positive temperature coefficient have many applications, including overcharge and over-temperature protection in lithium-ion (Li-ion) batteries. The thermoresistive properties of an electrically conductive polymer, based on a Ni(salen)-type backbone, known as polyNiMeOSalen, were evaluated by means of in situ resistivity measurements. It was found that the polymer was conductive at temperatures below 220 °C; however, the polymer increased in resistivity by three orders of magnitude upon reaching 250 °C. Thermogravimetric results combined with elemental analyses revealed that the switch from the insulation stage to the conductive stage resulted from thermally dedoping the polymer. Electrochemical studies demonstrated that a polymer retains its electroactivity when it is heated and can be recovered to a conductive state through oxidation via electrochemical doping in an electrolyte solution.


Author(s):  
Kyung-min Jang ◽  
Kwang-Woo Choi ◽  
John E. NamGoong ◽  
Kwang-Sun Kim

As the demand of the rechargeable battery has been requested not only from operating the small devices, but also from operating the large and medium size equipment such as an electric vehicle, the research has been focused on the stability of the battery, minimization of the energy loss, and finding the new materials for effective energy storage. The Lithium-ion (Li-ion) battery consists of four main components which are cathode active material, anode active material, electrolyte, and the separator. One of current research fields of the Li-ion battery material is in the area of cathode active material. It is because the cathode active material has 30∼40% of the manufacturing cost and it vastly affects the capacity of the batteries. In this research, we conduct one-cell simulation to compare the battery performance for changing the properties of the Cathode material. It is one of the thermochemical parameters that can affect the charge/discharge rate and the life of the batteries. Although, the certain kind of active materials has been reported in previous reports, we used the new material properties and researched about the whole discharge curve for future material development. The heating behavior is also investigated with the arbitrary properties being varied.


Author(s):  
Ying HUANG ◽  
Fangzhou ZHANG ◽  
Qiu-An HUANG ◽  
Yaolong HE ◽  
Jiujun Zhang

Abstract In this paper, the cracking of the solid electrolyte (SE) and its impacts on the effective Li-ion conductivity of composite electrodes of all-solid-state lithium-ion batteries (ASSLIBs) are investigated numerically. A two-dimensional finite element (2D FEM) model was developed for composite electrodes in which active material particles (AM particles) are embedded in the solid electrolyte. The 2D FEM model can successfully calculate and simulate the diffusion-induced stress, the generation of solid electrolyte cracks (SE cracks), and the Li-ion transport. The degradation of Li-ion conductivity for cracked composite electrodes is calculated with the homogenization method. It is revealed that the diffusion-induced volume variation in AM particles can generate significant stress and thus SE cracking in composite electrodes of ASSLIBs. The calculated results suggest that swelling AM particles are more favorable than shrinking AM particles for the structural stability of composite electrodes. It is also demonstrated that the evolution of the conductivity with the propagation of SE cracking is consistent with the percolation theory. The fundamental understating of the SE cracking and its impact in this paper may benefit the design of novel ASSLIBs with more stable performance and a longer lifespan.


2021 ◽  
Vol 58 (2) ◽  
pp. 211-219
Author(s):  
Ozan Toprakci

Since the commercialization of Li-ion batteries by Sony in 1990, the performance of cathode materials used in Li-ion batteries has improved significantly. However, Li-ion batteries cannot respond to the needs of the energy storage market in terms of energy density. In order to increase theoretical energy density of active materials, molar mass of the active material should be decreased, or electron number participating per reaction or reaction potential should be increased. In this study, it was aimed to produce cathode materials for Li-ion batteries in the form of composite nanofibers via electrospinning method. For this purpose, porous LiFexMn1-xPO4/C composite nanofibers (1 ] x ] 0) were synthesized with a scalable, two-step method (electrospinning and subsequent heat treatment). The morphological, structural and electrochemical properties of the LiFexMn1-xPO4/C composite nanofibers were determined by scanning electron microscope, X-ray diffraction and galvanostatic charge/discharge tests. Cathodes made of LiFexMn1-xPO4/C composite nanofibers showed various advantages such as long cycle life, improved electrochemical performance etc. due to the presence of carbon and LiFexMn1-xPO4 in the composite structure. With the addition of Mn to the structure of LiFePO4/C composite nanofibers, electrochemical performance was improved. LiFe0.8Mn0.2PO4/C composite nanofibers showed the best performance in terms of energy density among the samples. Further increment in Mn/Fe ratio resulted declining electrochemical capacity and energy density.


2019 ◽  
Vol 959 ◽  
pp. 74-78 ◽  
Author(s):  
Johannes Öhl ◽  
Daniel Horn ◽  
Jörg Zimmermann ◽  
Rudolph Stauber ◽  
Oliver Gutfleisch

Lithium-ion batteries are crucial for non-emission technologies, like electric vehicles and renewable energy sources. The growing battery market causes supply risks for affected raw materials like cobalt, nickel, natural graphite and, in the future, lithium. On the other hand, the number of end-of-life Li-ion batteries grows significantly and provides an additional source for these critical materials via recycling. In electrohydraulic fragmentation (EHF), Li-ion battery cells are disintegrated at component interfaces, thus separating those components. Battery materials like cathode active material, graphite, electrode foils and housing parts can be extracted for producing new batteries or for further refining in hydrometallurgical processing. Compared to state-of-the-art pyrometallurgical recycling, the EHF is more energy and cost efficient due to the easy processing to a valuable battery material product.


Sign in / Sign up

Export Citation Format

Share Document