Facile synthesis of TiO2 film on glass for the photocatalytic removal of rhodamine B and tetracycline hydrochloride

2019 ◽  
Vol 9 (5) ◽  
pp. 437-443 ◽  
Author(s):  
Jiaxin Li ◽  
Zhi Chen ◽  
Jianfei Fang ◽  
Qian Yang ◽  
Xiuru Yang ◽  
...  

Photocatalysis is one of the efficient approaches for pollution control in water. However, the traditional photocatalysts used for the removal of organic pollutants are in powder form, which makes it difficult to recover them from the suspended reaction system. On the contrary, thin film photocatalyst is easy to be retrieved and possesses unique feature for practical application. In present work, stable TiO2 sol suspension was prepared and amorphous TiO2 thin film was then immobilized upon glass substrate through facile spin coating method. The thickness of film could be simply controlled by changing the number of coatings, and anatase TiO2 film could be formed after calcination. The prepared thin films were characterized with X-ray diffraction (XRD), ultravioletvisible spectrophotometry (UV-vis), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The photodegradations of organic pollutants including colored dye and colorless antibiotic were tested and found to be thickness-dependent. Additionally, the prepared film photocatalst has good stability and may have potential applications in wastewater treatment.

2020 ◽  
pp. 90-94

In this work we have investigated thin film blend produced from regioregular poly(3-hexylthiophene) (rr-P3HT), Poly(o-toluidine) doped with dodecylbenzene sulphonic (POT:DBSA) and [6,6]-phenyl-C61 butyric acid methylester (PCBM) materials by spin coating method for application as active layer in photoactive solar cell (PSCs). A thin film uniform rr-P3HT:PCBM and rr-P3HT:POT:DBSA:PCBM were successfully deposited on the poly (3,4 ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT:PSS) buffer layer substrate. The absorption spectra of the films were studied by using UV–vis spectrophotometer and Raman spectroscopy. the morphology of films is evaluated by X-ray diffraction (XRD) and atomic force microscopy (AFM) patterns. We have seen that, the efficiency enhancement for the device with a rr-P3HT:POT:DBSA:PCBM film is more significant than for the device with rr-P3HT:PCBM.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012033
Author(s):  
Abubaker.S. Mohammed

Abstract In this article, the quaternary compound Cu2MSnS4 was prepared in a simple and inexpensive approach, where M is the iron (Fe) and zinc (Zn) atoms by the spin coating method on a glass substrate at room temperature (RT), as a result of replacing Zn atoms by Fe. Quaternary Cu2ZnSnS4 (CZTS) and Cu2FeSrS4 (CFTS) structural and optical properties have been studied successfully. The material has been identified by X-ray diffraction, and it was discovered that CZTS has a polycrystalline Tetragonal (kesterite) structure, whereas CFTS has a Tetragonal (stannite) structure. A reduction in the full width half maximum (FWHM) of the preferred plane implies a high degree of crystallization. The structural properties of the film surface, such as grain size and roughness, were studied by Atomic force microscopy (AFM). The results explain an increase in nanoparticle size and surface roughness when Fe is substituted by Zn in the CZTS structure. The absorption coefficient values of all designed compounds in visible regions are greater than 104/cm, and the results show that the absorbance coefficient increases with Fe add. The CZTS films showed an energy gap of 1.88 eV, and this value became 1.69 eV with substituted Fe instead of Zn.


1999 ◽  
Vol 562 ◽  
Author(s):  
C. Liu ◽  
L. Shen ◽  
H. Jiang ◽  
D. Yang ◽  
G. Wu ◽  
...  

ABSTRACTThe Ni80Fe20/Fe50Mn50,thin film system exhibits exchange bias behavior. Here a systematic study of the effect of atomic-scale thin film roughness on coercivity and exchange bias is presented. Cu (t) / Ta (100 Å) / Ni80Fe20 (100 Å) / Fe50Mno50 (200 Å) / Ta (200 Å) with variable thickness, t, of the Cu underlayer were DC sputtered on Si (100) substrates. The Cu underlayer defines the initial roughness that is transferred to the film material since the film grows conformal to the initial morphology. Atomic Force Microscopy and X-ray diffraction were used to study the morphology and texture of the films. Morphological characterization is then correlated with magnetometer measurements. Atomic Force Microscopy shows that the root mean square value of the film roughness exhibits a maximum of 2.5 Å at t = 2.4 Å. X-ray diffraction spectra show the films are polycrystalline with fcc (111) texture and the Fe50Mn50 (111) peak intensity decreases monotonically with increasing Cu thickness, t. Without a Cu underlayer, the values of the coercivity and loop shift are, Hc = 12 Oe and Hp = 56 Oe, respectively. Both the coercivity and loop shift change with Cu underlayer thickness. The coercivity reaches a maximum value of Hc= 36 Oe at t = 4 Å. The loop shift exhibits an initial increase with t, reaches a maximum value of HP = 107 Oe at t = 2.4 Å, followed by a decrease with greater Cu thickness. These results show that a tiny increase in the film roughness has a huge effect on the exchange bias magnitude.


2003 ◽  
Vol 763 ◽  
Author(s):  
Sung-Ho Han ◽  
Dean H. Levi ◽  
Hamda A. Althani ◽  
Falah S. Hasoon ◽  
Raghu N. Bhattacharya ◽  
...  

AbstractThe highest efficiency CuIn1-xGaxSe2 (CIGS) solar cells use thin-film polycrystalline CIGS absorber layers. We have applied variable angle spectroscopic ellipsometry (VASE) to characterize the dielectric functions of polycrystalline thin films of CIGS with Ga: (In + Ga) ratios ranging from 0.18 to 1.0. The Cu: (In + Ga) ratios in these films are approximately 0.90, which is the ratio that yields the highest efficiency CIGS devices. Spectra were measured over the energy range 0.7 to 5.0 eV at room temperatures. Models used to analyze the ellipsometry data include the full multi-layer structure of the sample, which enables us to report the actual dielectric function rather than the pseudo-dielectric function. We present data on how the critical points change with composition, and compare and contrast our results with measurements of single-crystal and bulk polycrystalline samples reported in the literature. Auger electron spectroscopy, atomic force microscopy, and X-ray diffraction have been used to verify the homogeneity, surface roughness, and phase purity, respectively.


Crystals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 373 ◽  
Author(s):  
Roland Resel ◽  
Markus Koini ◽  
Jiri Novak ◽  
Steven Berkebile ◽  
Georg Koller ◽  
...  

A 30 nm thick quinquephenyl (5P) film was grown by molecular beam deposition on a Cu(110)(2×1)O single crystal surface. The thin film morphology was studied by light microscopy and atomic force microscopy and the crystallographic structure of the thin film was investigated by X-ray diffraction methods. The 5P molecules crystallise epitaxially with (201)5P parallel to the substrate surface (110)Cu and with their long molecular axes parallel to [001]Cu. The observed epitaxial alignment cannot be explained by lattice matching calculations. Although a clear minimum in the lattice misfit exists, it is not adapted by the epitaxial growth of 5P crystals. Instead the formation of epitaxially oriented crystallites is determined by atomic corrugations of the substrate surface, such that the initially adsorbed 5P molecules fill with its rod-like shape the periodic grooves of the substrate. Subsequent crystal growth follows the orientation and alignment of the molecules taken within the initial growth stage.


Gels ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 49
Author(s):  
Bijender Kumar ◽  
Ruchir Priyadarshi ◽  
Sauraj ◽  
Farha Deeba ◽  
Anurag Kulshreshtha ◽  
...  

Novel sodium carboxymethyl cellulose-g-poly (sodium acrylate)/Ferric chloride (CMC-g-PNaA/FeCl3) nanoporous hydrogel beads were prepared based on the ionic cross-linking between CMC-g-PNaA and FeCl3. The structure of CMC and CMC-g-PNaA were elucidated by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) spectroscopy, and the elemental composition was analyzed by energy dispersive X-ray analysis (EDX). The physicochemical properties of the CMC-g-PNaA/FeCl3 hydrogel beads were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and thermogravimetric analysis (TGA). The swelling percentage of hydrogel beads was studied at different time periods. The obtained CMC-g-PNaA/FeCl3 hydrogel beads exhibited a higher nanoporous morphology than those of CMC-g-PNaA and CMC beads. Furthermore, an AFM image of the CMC-g-PNaA/FeCl3 beads shows granule type topology. Compared to the CMC-g-PNaA (189 °C), CMC-g-PNaA/FeCl3 hydrogel beads exhibited improvement in thermal stability (199 °C). Furthermore, CMC-g-PNaA/FeCl3 hydrogel beads depicted a higher swelling percentage capacity of around 1452%, as compared to CMC-g-PNaA (1096%). Moreover, this strategy with preliminary results could be useful for the development of polysaccharide-based hybrid hydrogel beads for various potential applications.


1996 ◽  
Vol 446 ◽  
Author(s):  
Mingming Fang ◽  
Chy Hyung Kim ◽  
Anthony C. Sutorik ◽  
David M. Kaschak ◽  
Thomas E. Mallouk

AbstractSeveral layered inorganic materials (e.g. KCa2Nb3O10, KTiNbO5, and CsPb2Nb3O10) were prepared and their alkali cations exchanged by in aqueous acid. A fraction of the interlayer protons of HCa2Nb3O10 and HTiNbO5 can be replaced by tetra-n-butylammonium (TBA+), by reaction with TBA+OH. Intercalation of a sufficient amount of TBA+ causes complete exfoliation, and single, nanometer-thick sheets of these materials are thus obtained. By sequential adsorption of these two-dimensional colloidal polyanions and polymeric cations, monolayer sheets of layered perovskites can be stacked on silicon surfaces to give thin films of any desired thickness. The layered materials, the exfoliated colloids, and the thin film multilayers on silicon were studied by X-ray diffraction, transmission electronic microscopy (TEM), ellipsometry, and atomic force microscopy (AFM). The dielectric properties of the related bulk materials were measured, and are also discussed.


2015 ◽  
Vol 14 (01n02) ◽  
pp. 1460027 ◽  
Author(s):  
Jiaxiong Wu ◽  
Wei Cai ◽  
Guangyi Shang

LiFePO 4 films were deposited on Au / Si substrate by radio-frequency magnetron sputtering. The effect of annealing on the crystallization and morphology of LiFePO 4 thin film has been investigated. X-ray diffraction revealed that the films through annealing were well crystallized compared with as-deposited films. The surface morphology of the thin film was also observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Electrochemical tests in 1M Li 2 SO 4 showed that the annealed thin film in 500°C exhibits larger Li -ion diffusion coefficient (3.46 × 10-7 cm2s-1) than as-deposited film and powder. Furthermore, cyclic voltammetry demonstrate a well-defined lithium intercalation/deintercalation reaction at around 0.45 V versus SCE (i.e., 3.6 V versus Li +/ Li ), suggesting that the annealed LiFePO 4 thin film is a promising candidate cathode film for lithium microbatteries.


2020 ◽  
Vol 71 (7) ◽  
pp. 272-277
Author(s):  
Rovena Veronica Pascu

The cubic structure 8YSZ (8%Yttria-Stabilized Zirconia) thin films deposited by PLD(Pulsed Laser Deposition) on substrates Si (100) and Pt/Si (111) by identical control parameters have potential applications as electrolytes for planar micro electrochemical devices like Lambda oxygen sensors and IT-�SOFC. It appearance differences in polycrystalline structural and optical characterization by XRD (X-ray Diffraction), SEM (Scanning Electron Microscope), AFM (Atomic Force Microscopy) and V- VASE (Variable Angle Spectroscopic Ellipsometry. The differences are relating on crystalline dimensions, lattice parameters; surface roughness measured by V- VASE and AFM are presented synthetic to evidence the differences generated by substrates.


Sign in / Sign up

Export Citation Format

Share Document