A Comparative Study of Carbon Emission of Wormwood Viscose Fiber and Flax Fiber for the Production of Antibacterial Nanofibers Based on GaBi Software

2020 ◽  
Vol 12 (9) ◽  
pp. 1144-1149
Author(s):  
Jin Zhang ◽  
Xiaoming Qian ◽  
Jing Feng ◽  
Hui Liu

Because of its antibacterial properties, wormwood can be used in the production of nanobiomaterials. In this paper, each stage of the production process of wormwood viscose fiber and flax fiber was determined. The carbon emission of each stage of the production process of 1 ton wormwood viscose fiber and flax fiber was analyzed by GaBi software, and the environmental impact of the production process was evaluated by using the CML2001 method provided by the software. The results showed that a total of 1690.04 kg of carbon dioxide was emitted in the production of 1 ton of wormwood viscose fiber, 60% in the preparation stage, 36.36% in the acid bath stage and 3.64% in the treatment stage. A total of 1541.41 kg of carbon dioxide was emitted in the production of 1 ton of flax fiber, with the pretreatment stage accounting for 39.95% of the total amount, the alkali cooking stage accounting for 50.06% of the total amount, and the pickling stage accounting for 9.99% of the total amount. The results can provide support for the production of antibacterial nanofibers.

2021 ◽  
Vol 11 (4) ◽  
pp. 1616
Author(s):  
Antonina Rita Limongi ◽  
Emanuele Viviano ◽  
Maria De Luca ◽  
Rosa Paola Radice ◽  
Giuliana Bianco ◽  
...  

The need to safeguard our planet by reducing carbon dioxide emissions has led to a significant development of research in the field of alternative energy sources. Hydrogen has proved to be the most promising molecule, as a fuel, due to its low environmental impact. Even if various methods already exist for producing hydrogen, most of them are not sustainable. Thus, research focuses on the biological sector, studying microalgae, and other microorganisms’ ability to produce this precious molecule in a natural way. In this review, we provide a description of the biochemical and molecular processes for the production of biohydrogen and give a general overview of one of the most interesting technologies in which hydrogen finds application for electricity production: fuel cells.


2021 ◽  
Author(s):  
Sultan Ahmari ◽  
Abdullatef Mufti

Abstract The paper objective is to present the successful achievement by Saudi Aramco gas operations to reduce the carbon emission at Hawyiah NGL Recovery Plant (HNGLRP) after successful operation & maintainability of the newly state of the art Carbon Capture & Sequestration (CC&S) technology. This is in line with the Kingdom of Saudi Arabia (KSA) 2030 vision to increase the resources sustainability for future growth and part of Saudi Aramco circular economy in action examples. Saudi Aramco CC&S started in June 2015 at HNGLRP with main objective to capture the carbon dioxide (CO2) from Acid Gas Removal Units (AGRUs) and then inject an annual mass of nearly 750 Kton of carbon dioxide into oil wells for sequestration and enhanced oil recovery maintainability. This is to replace the typical acid gas incineration process after AGRUs operation to reduce carbon footprint. CC&S consists of the followings: integrally geared multistage compressor, standalone dehydration system using Tri-Ethylene Glycol (TEG), CO2 vapor recovery unit (VRU), Granulated Activated Carbon (GAC) to treat water generated from compression and dehydration systems for reuse purpose, and special dense phase pump that transfers the dehydrated CO2 at supercritical phase through 85 km pipeline to replace the typical sea water injection methodology in enhancing oil recovery. CC&S has several new technologies and experiences represented by the compressor capacity, supercritical phase fluid pumping, using mechanical ejector application to maximize carbon recovery, and CO2/TEG dehydration system as non-typical dehydration system. CC&S design considered the occupational health hazards generated from the compressor operation by installing engineering enclosure with proper ventilation system to minimize the noise hazard. CC&S helped HNGLRP to reduce the overall Greenhouse Gas (GHG) emission resulted from typical CO2 incineration process (thermal oxidizing). (2) The total GHG resulted from combustion sources at HNGLRP reduced by nearly 30% since CC&S technology in operation. The fuel gas consumption to run the thermal oxidizers in AGRUs reduced by 75% and sent as sales gas instead. The Energy Intensity Index (EII) reduced by 8% since 2015, water reuse index (WRI) increased by 12%. In conclusion, the project shows significant reduction in the carbon emission, noticeable increase in the production, and considerable water reuse.


2021 ◽  
Vol 894 (1) ◽  
pp. 012004
Author(s):  
S Hartini ◽  
B S Ramadan ◽  
R Purwaningsih ◽  
S Sumiyati ◽  
M A A Kesuma

Abstract Tofu contains various substances that are very good when consumed to improve people’s nutrition. In addition, tofu also has good taste. The problem is that the tofu production process produces products and non-product outputs in the form of waste that is very dangerous if directly disposed of in the environment. The BOD5 content of tofu small and medium-sized enterprises (SMEs) in Sugihmanik Village ranged from 3,667-4,933 mg/L and COD 7,668-9,736 mg/L. At the same time, the TSS values ranged from 701-1,189 mg/L. The BOD5 value in the river water content is 367 mg/L. It greatly exceeds the set Threshold Value. This study aims to measure the environmental impact using Life Cycle Assessment (LCA). LCA can identify the impact of each activity based on the impact category to identify the processes that contribute significantly to damaging the environment. This study found that the cooking and frying process had the highest impact, where the climate change category was the largest. Wastewater treatment plants, biogas from the biodigester as a substitute for electricity for water pumps, rice husks, and corn cobs are expected to reduce environmental impacts. The first section in your paper


2019 ◽  
Vol 16 (1) ◽  
pp. 148-160
Author(s):  
Olga Piterina ◽  
Alexander Masharsky

Abstract Research purpose. The high-speed railway (HSR) construction project in the Baltic States is the largest joint infrastructure project since the restoration of independence of Latvia, Lithuania and Estonia. Rail Baltica (RB) is considered as the most energy-efficient project having the lowest environmental impact. However, the issue of energy consumption of the project was not sufficiently addressed either in the investment justification of the RB construction or in the relevant research works regarding the project. The aim of the current research is to determine the indicators of energy consumption and carbon dioxide (CO2) emissions intensity of the Latvian section of RB, since they are the key factors of the quantitative assessment of sustainability. Design/Methodology/Approach. Critical analysis of the academic research works and reports of the official international organizations dedicated to the topic of energy consumption and CO2 emissions of HSR was conducted prior to the calculation of the above-mentioned indicators. The method of calculation based on International Union of Railways (UIC) was used in order to conduct the cluster analysis within the framework of current work. The main points considered are electricity consumption, carbon dioxide emissions, and level of passenger and freight demand. Statistical databases of UIC and International Energy Agency were used. Findings. The calculations carried out by the authors of the given article demonstrate substantial figures of CO2 emissions intensity for Latvian section of the project related to the train load rate and traffic intensity which is evened out only by the CO2 emissions factor in Latvia. Originality/Value/Practical implications. On this basis the authors present the directions for future research required for the development of the effective strategy for the Latvian Republic with the aim of achieving the increase in the RB project’s ecological efficiency.


Sign in / Sign up

Export Citation Format

Share Document