Calculation Method of Fracture Conductivity Based on Performance of Proppant Material

2021 ◽  
Vol 13 (3) ◽  
pp. 417-426
Author(s):  
Yun-Xiang Zhao ◽  
Da-Li Guo ◽  
Chuan-Xin Zhang ◽  
Zi-Xi Guo ◽  
Yi-Cheng Sun

Proppant is one of the key materials used for hydraulic fracturing, directly determining the production of oil and gas wells, which greatly affects the economic benefits. The main function of the proppant is to prop fracture, and create channels with high fracture conductivity for oil and gas to flow through. First, the microscopic arrangement structure of proppant was studied, and the proppant porosity was calculated in different arrangement structures. Second, a proppant embedment model was established based on the elastic-plastic deformation between the proppant partcles and the fracture surface. Third, a fracture conductivity model was established based on various parameters, such as, diameter, concentration, strength, crushing rate, embedment, etc. Finally, the proppant embedment depth was calculated on the basis of the new model, from which predicted values match with the experimental values within an average error of less than 7%. The fracture conductivity was calculated. From a comparison with the experimental values, the average error was less than 6.8%. The calculated proppant embedment depth and fracture conductivity were consistent with the experimental results, which verified the accuracy of the new model. This study is of significance for guiding hydraulic fracturing design.

2019 ◽  
Vol 394 ◽  
pp. 63-67
Author(s):  
Jiao Yang

Fracturing proppant is an important material for hydraulic fracturing, and its performancehas an important impact on the fracturing effect and the fracturing life of oil and gas wells. On thepremise of satisfying the reservoir reconstruction requirement, optimizing the proppant with the besteconomic benefit can reduce the cost of the fracturing operation. The flow conductivity and brokenrate of common proppants are tested to obtain the performance boundaries. Based on the proppantevaluation, according to the selection method, the optimal proppant type for different formationpressures can be selected to maximize economic benefits.


SPE Journal ◽  
2017 ◽  
Vol 22 (02) ◽  
pp. 632-644 ◽  
Author(s):  
Fengshou Zhang ◽  
Haiyan Zhu ◽  
Hanguo Zhou ◽  
Jianchun Guo ◽  
Bo Huang

Summary In this paper, an integrated discrete-element-method (DEM)/computational-fluid-dynamics (CFD) numerical-modeling work flow is developed to model proppant embedment and fracture conductivity after hydraulic fracturing. Proppant with diameter from 0.15 to 0.83 mm was modeled as a frictional particle assembly, whereas shale formation was modeled as a bonded particle assembly by using the bonded-particle model in PFC3D (Itasca Consulting Group 2010). The mechanical interaction between proppant pack and shale formation during the process of fracture closing was first modeled with DEM. Then, fracture conductivity after the fracture closing was evaluated by modeling fluid flow through the proppant pack by use of DEM coupled with CFD. The numerical model was verified by laboratory fracture-conductivity experiment results and the Kozeny-Carman equation. The simulation results show that the fracture conductivity increases with the increase of proppant concentration or proppant size, and decreases with the increase of fracture-closing stress or degree of shale hydration; shale-hydration effect was confirmed to be the main reason for the large amount of proppant embedment.


2021 ◽  
Vol 252 ◽  
pp. 03049
Author(s):  
Yin Shun-li ◽  
Zhuang Tian-lin ◽  
Yang Li-yong ◽  
Jia Yun-peng ◽  
Liu Xue-wei ◽  
...  

The conductivity of supporting fractures is an important parameter to evaluate the hydraulic fracturing effect of shale reservoirs, and its size is affected by many factors. In this paper, the proppant is optimized and evaluated on the basis of real rock slab simulation and actual construction proppant test. The laboratory experimental study on the influence of proppant type, sand concentration, proppant embedding and fracturing fluid residue on propping fracture conductivity is carried out, the results show that the average conductivity of 40 / 70 mesh proppant is about 7.15d · cm at 5kg / m2 sand concentration under the condition of reservoir closure pressure of about 50MPa, which can basically meet the requirements of main fracture conductivity of Kong 2 shale reservoir in Dagang Oilfield; the damage of guar gum fracturing fluid and proppant embedment are two important factors that cause the great decline of conductivity of rock slab, and the damage of guar gum fracturing fluid has a great influence on the conductivity, reaching about 50%; the stronger the mud is (the higher the clay content is), the greater the embedment degree of proppant is, and the greater the loss of conductivity is; for the same lithology, the proppant particle size has little damage to the conductivity, and the sand concentration has a greater impact on the conductivity. The larger the sand concentration is, the smaller the loss of the conductivity is.


Author(s):  
Ioannis Tsapakis

Recent advances in horizontal drilling and hydraulic fracturing technologies have allowed producers to extract oil and gas from thin reservoirs that may not be economically viable through vertical drilling. While the new hydraulic fracturing technologies have resulted in substantial economic benefits for the state of Texas, they tend to generate high volumes of truck traffic that diversely affect the transportation system. Many of the affected roads were designed and built several decades ago to meet low traffic demand levels and not heavy repetitive truck loads. The goal of this study is to enhance state agencies’ ability to determine the truck traffic associated with fracking in existing and new wells based on several well characteristics. This paper explores spatio-temporal trends in hydraulic fracturing in Texas and develops a methodology that agencies can use to estimate the amount of water and the number of trucks needed to frack and fully develop a well. The analysis revealed that fracking horizontal wells generates eight times more water and, therefore, truck traffic than vertical wells. The relationship between water volume versus well length is non-linear. The length of laterals has a very strong correlation with frack water (0.818) and sand (0.763), while the vertical well depth has a weak to negligible relationship with fracking materials. The two prediction models presented in the paper produced statistically similar results with average errors of less than 20%. The paper explains how the predicted water volumes can be converted into the number of trucks needed to frack and fully develop a well.


2018 ◽  
Vol 45 (1) ◽  
pp. 159-166 ◽  
Author(s):  
Ming CHEN ◽  
Shicheng ZHANG ◽  
Ming LIU ◽  
Xinfang MA ◽  
Yushi ZOU ◽  
...  

Author(s):  
Kamel Fahmi Bou-Hamdan ◽  
Azza Hashim Abbas

AbstractIn the oil and gas industry, hydraulic fracturing (HF) is a common application to create additional permeability in unconventional reservoirs. Using proppant in HF requires understanding the interactions with rocks such as shale, and the mechanical aspects of their contacts. However, these studies are limited in literature and inconclusive. Therefore, the current research aims to apply a novel method, mainly ultrasound, to investigate the proppant embedment phenomena for different rocks. The study used proppant materials that are susceptible to fractures (glass) and others that are hard and do not break (steel). Additionally, the materials used to represent brittle shale rocks (polycarbonate and phenolic) were based on the ratio of elastic modulus to yield strength (E/Y). A combination of experimental and numerical modeling was used to investigate the contact stresses, deformation, and vertical displacement. The results showed that the relation between the stresses and ultrasound reflection coefficient follows a power-law equation, which validated the method application. From the experiments, plastic deformation was encountered in phenolic surfaces despite the corresponding contacted material. Also, the phenolic stresses showed a difference compared to polycarbonate for both high and low loads, which is explained by the high attenuation coefficient of phenolic that limited the quality of the reflected signal. The extent of vertical displacements surrounding the contact zone was greater for the polycarbonate materials due to the lower E/Y, while the phenolic material was limited to smaller areas not exceeding 50% of polycarbonate for all tested load conditions. Therefore, the study confirms that part of the contact energy in phenolic material was dissipated in the plastic deformation, indicating greater proppant embedment, and leading to a loss in fracture conductivity for rocks of higher E/Y.


Author(s):  
Zixi Guo ◽  
Huaibin Zhen ◽  
Dong Chen ◽  
Bin Sun ◽  
Xiaoya Chen ◽  
...  

2019 ◽  
Vol 3 (1) ◽  
pp. 1-14
Author(s):  
Miriam R. Aczel ◽  
Karen E. Makuch

High-volume hydraulic fracturing combined with horizontal drilling has “revolutionized” the United States’ oil and gas industry by allowing extraction of previously inaccessible oil and gas trapped in shale rock [1]. Although the United States has extracted shale gas in different states for several decades, the United Kingdom is in the early stages of developing its domestic shale gas resources, in the hopes of replicating the United States’ commercial success with the technologies [2, 3]. However, the extraction of shale gas using hydraulic fracturing and horizontal drilling poses potential risks to the environment and natural resources, human health, and communities and local livelihoods. Risks include contamination of water resources, air pollution, and induced seismic activity near shale gas operation sites. This paper examines the regulation of potential induced seismic activity in Oklahoma, USA, and Lancashire, UK, and concludes with recommendations for strengthening these protections.


Sign in / Sign up

Export Citation Format

Share Document