scholarly journals Recent Advances in Proppant Embedment and Fracture Conductivity after Hydraulic Fracturing

2017 ◽  
Vol 1 (4) ◽  
Author(s):  
Zhu HY
2021 ◽  
Vol 13 (3) ◽  
pp. 417-426
Author(s):  
Yun-Xiang Zhao ◽  
Da-Li Guo ◽  
Chuan-Xin Zhang ◽  
Zi-Xi Guo ◽  
Yi-Cheng Sun

Proppant is one of the key materials used for hydraulic fracturing, directly determining the production of oil and gas wells, which greatly affects the economic benefits. The main function of the proppant is to prop fracture, and create channels with high fracture conductivity for oil and gas to flow through. First, the microscopic arrangement structure of proppant was studied, and the proppant porosity was calculated in different arrangement structures. Second, a proppant embedment model was established based on the elastic-plastic deformation between the proppant partcles and the fracture surface. Third, a fracture conductivity model was established based on various parameters, such as, diameter, concentration, strength, crushing rate, embedment, etc. Finally, the proppant embedment depth was calculated on the basis of the new model, from which predicted values match with the experimental values within an average error of less than 7%. The fracture conductivity was calculated. From a comparison with the experimental values, the average error was less than 6.8%. The calculated proppant embedment depth and fracture conductivity were consistent with the experimental results, which verified the accuracy of the new model. This study is of significance for guiding hydraulic fracturing design.


SPE Journal ◽  
2017 ◽  
Vol 22 (02) ◽  
pp. 632-644 ◽  
Author(s):  
Fengshou Zhang ◽  
Haiyan Zhu ◽  
Hanguo Zhou ◽  
Jianchun Guo ◽  
Bo Huang

Summary In this paper, an integrated discrete-element-method (DEM)/computational-fluid-dynamics (CFD) numerical-modeling work flow is developed to model proppant embedment and fracture conductivity after hydraulic fracturing. Proppant with diameter from 0.15 to 0.83 mm was modeled as a frictional particle assembly, whereas shale formation was modeled as a bonded particle assembly by using the bonded-particle model in PFC3D (Itasca Consulting Group 2010). The mechanical interaction between proppant pack and shale formation during the process of fracture closing was first modeled with DEM. Then, fracture conductivity after the fracture closing was evaluated by modeling fluid flow through the proppant pack by use of DEM coupled with CFD. The numerical model was verified by laboratory fracture-conductivity experiment results and the Kozeny-Carman equation. The simulation results show that the fracture conductivity increases with the increase of proppant concentration or proppant size, and decreases with the increase of fracture-closing stress or degree of shale hydration; shale-hydration effect was confirmed to be the main reason for the large amount of proppant embedment.


2021 ◽  
Vol 252 ◽  
pp. 03049
Author(s):  
Yin Shun-li ◽  
Zhuang Tian-lin ◽  
Yang Li-yong ◽  
Jia Yun-peng ◽  
Liu Xue-wei ◽  
...  

The conductivity of supporting fractures is an important parameter to evaluate the hydraulic fracturing effect of shale reservoirs, and its size is affected by many factors. In this paper, the proppant is optimized and evaluated on the basis of real rock slab simulation and actual construction proppant test. The laboratory experimental study on the influence of proppant type, sand concentration, proppant embedding and fracturing fluid residue on propping fracture conductivity is carried out, the results show that the average conductivity of 40 / 70 mesh proppant is about 7.15d · cm at 5kg / m2 sand concentration under the condition of reservoir closure pressure of about 50MPa, which can basically meet the requirements of main fracture conductivity of Kong 2 shale reservoir in Dagang Oilfield; the damage of guar gum fracturing fluid and proppant embedment are two important factors that cause the great decline of conductivity of rock slab, and the damage of guar gum fracturing fluid has a great influence on the conductivity, reaching about 50%; the stronger the mud is (the higher the clay content is), the greater the embedment degree of proppant is, and the greater the loss of conductivity is; for the same lithology, the proppant particle size has little damage to the conductivity, and the sand concentration has a greater impact on the conductivity. The larger the sand concentration is, the smaller the loss of the conductivity is.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1783
Author(s):  
Klaudia Wilk-Zajdel ◽  
Piotr Kasza ◽  
Mateusz Masłowski

In the case of fracturing of the reservoirs using fracturing fluids, the size of damage to the proppant conductivity caused by treatment fluids is significant, which greatly influence the effective execution of hydraulic fracturing operations. The fracturing fluid should be characterized by the minimum damage to the conductivity of a fracture filled with proppant. A laboratory research procedure has been developed to study the damage effect caused by foamed and non-foamed fracturing fluids in the fractures filled with proppant material. The paper discusses the results for high quality foamed guar-based linear gels, which is an innovative aspect of the work compared to the non-foamed frac described in most of the studies and simulations. The tests were performed for the fracturing fluid based on a linear polymer (HPG—hydroxypropyl guar, in liquid and powder form). The rheology of nitrogen foamed-based fracturing fluids (FF) with a quality of 70% was investigated. The quartz sand and ceramic light proppant LCP proppant was placed between two Ohio sandstone rock slabs and subjected to a given compressive stress of 4000–6000 psi, at a temperature of 60 °C for 5 h. A significant reduction in damage to the quartz proppant was observed for the foamed fluid compared to that damaged by the 7.5 L/m3 natural polymer-based non-foamed linear fluid. The damage was 72.3% for the non-foamed fluid and 31.5% for the 70% foamed fluid, which are superior to the guar gum non-foamed fracturing fluid system. For tests based on a polymer concentration of 4.88 g/L, the damage to the fracture conductivity by the non-foamed fluid was 64.8%, and 26.3% for the foamed fluid. These results lead to the conclusion that foamed fluids could damage the fracture filled with proppant much less during hydraulic fracturing treatment. At the same time, when using foamed fluids, the viscosity coefficient increases a few times compared to the use of non-foamed fluids, which is necessary for proppant carrying capacities and properly conducted stimulation treatment. The research results can be beneficial for optimizing the type and performance of fracturing fluid for hydraulic fracturing in tight gas formations.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3133
Author(s):  
Yuling Meng ◽  
Fei Zhao ◽  
Xianwei Jin ◽  
Yun Feng ◽  
Gangzheng Sun ◽  
...  

Fracturing fluids are being increasingly used for viscosity development and proppant transport during hydraulic fracturing operations. Furthermore, the breaker is an important additive in fracturing fluid to extensively degrade the polymer mass after fracturing operations, thereby maximizing fracture conductivity and minimizing residual damaging materials. In this study, the efficacy of different enzyme breakers was examined in alkaline and medium-temperature reservoirs. The parameters considered were the effect of the breaker on shear resistance performance and sand-suspending performance of the fracturing fluid, its damage to the reservoir after gel breaking, and its gel-breaking efficiency. The experimental results verified that mannanase II is an enzyme breaker with excellent gel-breaking performance at medium temperatures and alkaline conditions. In addition, mannanase II did not adversely affect the shear resistance performance and sand-suspending performance of the fracturing fluid during hydraulic fracturing. For the same gel-breaking result, the concentration of mannanase II used was only one fifth of other enzyme breakers (e.g., mannanase I, galactosidase, and amylase). Moreover, the amount of residue and the particle size of the residues generated were also significantly lower than those of the ammonium persulfate breaker. Finally, we also examined the viscosity-reducing capability of mannanase II under a wide range of temperatures (104–158 °F) and pH values (7–8.5) to recommend its best-use concentrations under different fracturing conditions. The mannanase has potential for applications in low-permeability oilfield development and to maximize long-term productivity from unconventional oilwells.


2018 ◽  
Vol 18 (3) ◽  
pp. 323-337
Author(s):  
Nguyen Huu Truong

Kinh Ngu Trang oilfield is of the block 09-2/09 offshore Vietnam, which is located in the Cuu Long basin, the distance from that field to Port of Vung Tau is around 140 km and it is about 14 km from the north of Rang Dong oilfield of the block 15.2, and around 50 km from the east of White Tiger in the block 09.1. That block accounts for total area of 992 km2 with the average water depth of around 50 m to 70 m. The characteristic of Oligocene E reservoir is tight oil in sandstone, very complicated with complex structure. Therefore, the big challenges in this reservoir are the low permeability and the low porosity of around 0.2 md to less than 1 md and 1% to less than 13%, respectively, leading to very low fracture conductivity among the fractures. Through the Minifrac test for reservoir with reservoir depth from 3,501 mMD to 3,525 mMD, the total leak-off coefficient and fracture closure pressure were determined as 0.005 ft/min0.5 and 9,100 psi, respectively. To create new fracture dimensions, hydraulic fracturing stimulation has been used to stimulate this reservoir, including proppant selection and fluid selection, pump power requirement. In this article, the authors present optimisation of hydraulic fracturing design using unified fracture design, the results show that optimum fracture dimensions include fracture half-length, fracture width and fracture height of 216 m, 0.34 inches and 31 m, respectively when using proppant mass of 150,000 lbs of 20/40 ISP Carbolite Ceramic proppant.


2021 ◽  
Author(s):  
Evgeniy Viktorovich Yudin ◽  
George Aleksandrovich Piotrovskiy ◽  
Maria Vladimirovna Petrova ◽  
Alexey Petrovich Roshchektaev ◽  
Nikita Vladislavovich Shtrobel

Abstract Requirements of targeted optimization are imposed on the hydraulic fracturing operations carried out in the conditions of borderline economic efficiency of fields taking into account geological and technological features. Consequently, the development of new analytical tools foranalyzing and planning the productivity of fractured wells, taking into account the structuralfeatures of the productive reservoir and inhomogeneous distribution of the fracture conductivity, is becoming highly relevant. The paper proposes a new approach of assessing the vertical hydraulic fracture productivityin a rectangular reservoir in a pseudo-steady state, based on reservoir resistivity concept described in the papers of Meyer et al. However, there is a free parameter in the case of modeling the productivity of a hydraulic fracture by the concept. The parameter describes the distribution of the inflow along the plane of the fracture. This paper presents a systematic approach to determining of the parameter. The resulting model allows to conduct an assessment of the influence of various complications in the fracture on the productivity index. During the research a method of determining the free parameter was developed,it was based on the obtained dependence of the inflow distribution on the coordinate along the fracture of finite conductivity. The methodology allowed to refine existent analytical solution of the Meyer et al. model, which, in turn, allowed to assess the influence of different fracture damages in the hydraulic fracture on the productivity index of the well. The work includes the cases of the presence of fracture damages at the beginning and at the end of the fracture. A hydraulic fracture model was built for each of the types of damages, it was based on the developed method, and also the solution of dimensionless productivity ratio was received. The results of the obtained solution were confirmed by comparison with the numerical solutions of commercial simulators and analytical models available in the literature. The advantage of the methodology is the resulting formulas for well productivity are relatively simple, even for exotic cases ofvariable conductivity fractures. The approaches and algorithms described in the paper assume the calculation of the productivity of a hydraulic fracture with variable conductivity and the presence of other complicatingfactors.The methodology of the paper can be used for analysis and diagnosis problems with formation hydraulic fracturing. The efficiency of the calculations allows using the presented methodology to solve inverse problems of determining the efficiency of the hydraulic fracturing operation.


1985 ◽  
Vol 25 (02) ◽  
pp. 157-170 ◽  
Author(s):  
R.A. Cutler ◽  
D.O. Enniss ◽  
A.H. Jones ◽  
S.R. Swanson

Abstract Lightweight, intermediate-strength proppants have been developed that are intermediate in cost between sand and bauxite. A wide variety of proppant materials is characterized and compared in a laboratory fracture conductivity study. Consistent sample preparation, test, and data reduction procedures were practiced, which allow a relative comparison of the conductivity of various proppants at intermediate and high stresses. Specific gravity, proppants at intermediate and high stresses. Specific gravity, corrosion resistance, and crush resistance of each proppant also were determined. proppant also were determined. Fracture conductivity was measured to a laminar flow of deaerated, deionized water over a closure stress range of 6.9 to 96.5 MPa [1,000 to 14,000 psi] in 6.9-MPa [1,000-psi] increments. Testing was performed at a constant 50 degrees C [122 degrees F] temperature. Results of the testing are compared with values from the literature and analyzed to determine proppant acceptability in the intermediate and high closure stress regions. Fracture strengths for porous and solid proppants agree well with calculated values. Several oxide ceramics were found to have acceptable conductivity at closure stresses to 96.5 MPa [14,000 psi]. Resin-coated proppants have lower conductivities than uncoated, intermediate-strength oxide proppants when similar size distributions are tested. Recommendations are made for obtaining valid conductivity data for use in proppant selection and economic analyses. proppant selection and economic analyses. Introduction Massive hydraulic fracturing (MHF) is used to increase the productivity of gas wells in low-permeability reservoirs by creating deeply penetrating fractures in the producing formation surrounding the well. Traditionally, producing formation surrounding the well. Traditionally, high-purity silica sand has been pumped into the created fracture to prop it open and maintain gas permeability after completing the stimulation. The relatively low cost, abundance, sphericity, and low specific gravity of high-quality sands (e.g., Jordan, St. Peters, and Brady formation silica sands) have made sand a good proppant for most hydraulic fracturing treatments. The closure stress on the proppants increases with depth, and even for selected high-quality sands the fracture conductivity has been found to deteriorate rapidly when closure stresses exceed approximately 48 MPa [7,000 psi]. Several higher-strength proppants have been developed to withstand the increased closure stress of deeper wells. Sintered bauxite, fused zirconia, and resin-coated sands have been the most successful higher-strength proppants introduced. These proppants have improved proppants introduced. These proppants have improved crush resistance and have been used successfully in MHF treatments. The higher cost of these materials as compared to sand has been the largest single factor inhibiting their widespread use. The higher specific gravity of bauxite and zirconia proppants not only increases the volume cost differential compared to sand but also enhances proppant settling. Lower-specific-gravity proppants not only are more cost effective but also have the potential to improve proppant transport. Novotny showed the effect of proppant diameter on settling velocity in non-Newtonian fluids and concluded that proppant settling may determine the success or failure of a hydraulic fracturing treatment. By using the same proppant settling equation as Novotny, the settling velocity of 20/40 mesh proppants is calculated for four different specific gravities and shown as a function of fluid shear rate in Fig. 1. The specific gravity of bauxite is 3.65 and sand is 2.65; therefore, bauxite is 37.7 % more dense than sand. The settling velocity for bauxite, as shown in Fig. 1, however, is approximately 65 % higher than sand. Work on proppants with specific gravities lower than bauxite was initiated to improve the transport characteristics of the proppant during placement. It has been demonstrated that vertical propagation of the fracture can be limited by reducing the fracturing fluid pressure. The viscosity range of existing fracturing pressure. The viscosity range of existing fracturing fluids makes minimizing fluid viscosity a much more effective method of controlling pressure than lowering the pumping rate. A potential advantage of decreasing the pumping rate. A potential advantage of decreasing the specific gravity of the proppant is that identical proppant transport to that currently achievable can take place in lower-viscosity fluids. (Alternatively, higher volumes of proppant can be pumped in a given amount of a proppant can be pumped in a given amount of a high-viscosity fracturing fluid.) Not only are low-viscosity fluids capable of allowing better fracture control, they are also less expensive. More importantly, it recently was shown that the conductivity of a created hydraulic fracture in the Wamsutter area is about one-tenth of that predicted by laboratory conductivity tests. P. 157


2013 ◽  
Vol 423-426 ◽  
pp. 644-648
Author(s):  
Ying Kun Fu ◽  
Zhi Ping Li ◽  
Feng Peng Lai ◽  
Bao Song Yang ◽  
Chao Meng

Deposition of solid elemental sulfur may arouse severe damage to the formation and significantly affect the gas deliverability in sour gas reservoirs. As one main measure of stimulation, hydraulic fracturing always ceases to work due to the sulfur deposition in the fractures. To have a better understanding of the failure of fracture conductivity caused by sulfur deposition and learn the degree of fracture conductivity improved by acidification, an experimental was implemented and studied. In this paper, both the sulfur powder and an artificial fractured core were employed to simulate the process of sulfur deposition in the fractures. A further step was made to inject some hydrochloric acid into the blocked fracture caused by sulfur powder. The result showed that the fracture conductivity could be greatly reduced by the sulfur deposition. The fracture conductivity can be decreased by 17%~47% due to sulfur deposition. However, to some degree, acid-fracturing can improve the conductivity of fracture by eroding the surface of fracture. This means the failure of fracture blocked by sulfur deposition can be improved by acidification.


Sign in / Sign up

Export Citation Format

Share Document