scholarly journals No Evidence for a Single Oscillator Underlying Discrete Visual Percepts

2021 ◽  
Vol 21 (9) ◽  
pp. 2014
Author(s):  
Audrey Morrow ◽  
Jason Samaha
Keyword(s):  
2001 ◽  
Vol 356 (1415) ◽  
pp. 1717-1724 ◽  
Author(s):  
Louis W. Morgan ◽  
Jerry F. Feldman ◽  
Deborah Bell-Pedersen

Recent work on circadian clocks in Neurospora has primarily focused on the frequency ( frq ) and white–collar ( wc ) loci. However, a number of other genes are known that affect either the period or temperature compensation of the rhythm. These include the period (no relationship to the period gene of Drosophila ) genes and a number of genes that affect cellular metabolism. How these other loci fit into the circadian system is not known, and metabolic effects on the clock are typically not considered in single–oscillator models. Recent evidence has pointed to multiple oscillators in Neurospora , at least one of which is predicted to incorporate metabolic processes. Here, the Neurospora clock–affecting mutations will be reviewed and their genetic interactions discussed in the context of a more complex clock model involving two coupled oscillators: a FRQ/WC–based oscillator and a ‘ frq –less’ oscillator that may involve metabolic components.


2014 ◽  
Vol 68 (2) ◽  
Author(s):  
Manuel Donaire ◽  
Geert L.J.A. Rikken ◽  
Bart A. van Tiggelen

2021 ◽  
Author(s):  
Julian Schneider ◽  
Patrick Forster ◽  
Clement Romano ◽  
Marc Eichhorn ◽  
Christelle Kieleck

2019 ◽  
Vol 37 (1) ◽  
pp. 65-70
Author(s):  
M.M. El-Nahass ◽  
H.A.M. Ali

AbstractOptical properties of Si single crystals with different orientations (1 0 0) and (1 1 1) were investigated using spectrophotometric measurements in a spectral range of 200 nm to 2500 nm. The data of optical absorption revealed an indirect allowed transition with energy gap of 1.1 ± 0.025 eV. An anomalous dispersion in refractive index. The normal dispersion of the refractive index was discussed according to Wemple-DiDomenico single oscillator model. The oscillator energy Eo, dispersion energy Ed, high frequency dielectric constant ∈∞, lattice dielectric constant ∈L and electronic polarizability αe were estimated. The real ∈1 and imaginary ∈2 parts of dielectric constant were also determined.


Author(s):  
Arnaud Motard ◽  
Christophe Louot ◽  
Thierry Robin ◽  
Benoit Cadier ◽  
Nicolas Dalloz ◽  
...  

2018 ◽  
Vol 194 ◽  
pp. 01006
Author(s):  
Kalin Drumev

Results obtained for the energy spectra and the low-lying positive-parity energy eigenstates of the upper p f -shell nuclei 64Ge and 68Se with the use of the effective interaction JUN45 are reported. We address the question of how appropriate is the possibility to construct a symmetry-adapted shell model in a single oscillator shell using a Pairing-plus-Quadrupole Hamiltonian. Specifically, we study the goodness of the symmetries pseudo SU(3) and O(6) in the structure of the energy eigenstates. Finally, we relate our results to a proposed mixed-symmetry approach which is able to simultaneously account for the presence of both the pairing and the quadrupole modes as the most important ingredients in the effective interaction while using a restricted part of the full model space.


1983 ◽  
Vol 49 (6) ◽  
pp. 1481-1503 ◽  
Author(s):  
B. Jahan-Parwar ◽  
S. M. Fredman

The extrinsic buccal muscles in Aplysia are responsible for the overall protraction and retraction of the buccal mass during feeding. The six pairs of extrinsic muscles are organized into two groups, consisting of three protractors and three retractors. Insights into how the extrinsic muscles are controlled were obtained by examining the organization of the motor neurons that innervated them. The extrinsic buccal muscles are innervated by cerebral ganglion nerves and neurons. All the muscles examined appear to be multiply innervated. Identified neurons in the cerebral B, E, and G clusters were found to be motor neurons for individual extrinsic muscles. Some extrinsic muscles had both excitatory and inhibitory innervation. Two synergistic muscles, the extrinsic ventrolateral protractor (ExVLP) and the extrinsic dorsal protractor (ExDP), had common excitatory innervation by identified neuron E5. Two antagonistic muscles, the ExVLP and the extrinsic ventral retractor (ExVR), also had common innervation. Identified neuron E1 appeared to be an inhibitory motor neuron for the ExVLP but an excitatory motor neuron for the ExVR. Common innervation provides a simple mechanism for coordinating synergistic and antagonistic extrinsic muscles. On the basis of these data, a model for the control of buccal mass protraction and retraction is proposed. Bursting by extrinsic buccal muscles was coordinated with cyclic activity in the intrinsic muscles of the buccal mass. Antagonistic extrinsic muscles burst antiphasically and synergistic extrinsic muscles burst in phase when the buccal mass was fully protracted and exhibited a series of rhythmic contractions. Additionally, cerebral E cluster neurons burst in phase with stereotyped rhythmic buccal motor neuron discharges recorded from buccal nerves. The cerebral E cluster motor neurons were coordinated by common synaptic input. No monosynaptic connections were observed; homologous neurons in each E cluster received synaptic input with similar but not identical timing, indicating that the interneurons that coordinate the homologous motor neurons are synchronized. The source of the rhythm that drives synaptically mediated cerebral extrinsic muscle motor neuron bursting was in the buccal ganglia. Cutting one cerebral-buccal connective eliminated E neuron bursting on that side but had no effect on homologous neurons on the intact side. This suggests that a single oscillator in the buccal ganglia may coordinate both the extrinsic and intrinsic buccal muscles during feeding.


1980 ◽  
Vol 28 (9) ◽  
pp. 951-962
Author(s):  
Masayasu ◽  
Hata ◽  
A. Fukasawa ◽  
M. Bessho ◽  
S. Makino ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document