scholarly journals Stimulation of collagen gene expression and protein synthesis in murine mesangial cells by high glucose is mediated by autocrine activation of transforming growth factor-beta.

1994 ◽  
Vol 93 (2) ◽  
pp. 536-542 ◽  
Author(s):  
F N Ziyadeh ◽  
K Sharma ◽  
M Ericksen ◽  
G Wolf
1996 ◽  
Vol 7 (8) ◽  
pp. 1207-1215 ◽  
Author(s):  
J Y Guh ◽  
M L Yang ◽  
Y L Yang ◽  
C C Chang ◽  
L Y Chuang

Transforming growth factor beta (TGF-beta) may be important in the pathogenesis of diabetic nephropathy, and captopril is effective in treating this disorder. However, the mechanisms of this therapeutic effect as related to TGF-beta and its receptors are not known. Thus, the effects of captopril on cellular growth, TGF-beta 1, and TGF-beta receptors were studied in LLC-PK1 cells cultured in normal (11 mM) or high glucose (27.5 mM). This study found that glucose dose-dependently inhibited cellular mitogenesis while inducing hypertrophy in these cells at 72 h of culture, concomitantly with enhanced TGF-beta 1 messenger RNA (mRNA) and TGF-beta receptor Types I and II protein expressions. Captopril dose-dependently (0.1 to 10 mM) increased cellular mitogenesis and inhibited hypertrophy in these cells. Moreover, captopril also decreased TGF-beta receptor Types I and II protein expressions dose-dependently. However, TGF-beta 1 mRNA was not affected by captopril. It was concluded that high glucose decreased cellular mitogenesis while increasing hypertrophy concomitantly with increased TGF-beta 1 mRNA and TGF-beta receptors in LLC-PK1 cells. Captopril can reverse high-glucose-induced growth effects by decreasing TGF-beta receptor protein expressions.


Sign in / Sign up

Export Citation Format

Share Document