173 TRANSFORMING GROWTH FACTOR-BETA STIMULATION OF LUNG INFLAMMATORY CELLS FROM PRETERM INFANTS DOES NOT INDUCE MATRIX METALLOPROTEINASE-9

2005 ◽  
Vol 53 (1) ◽  
pp. S108.3-S108
Author(s):  
K. Aghajanian-Parks ◽  
A. Literat ◽  
K. Kwong ◽  
R. Ramanathan ◽  
P. Minoo
Scientifica ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Jelena Kocić ◽  
Victor Villar ◽  
Aleksandra Krstić ◽  
Juan F. Santibanez

Transforming growth factor-beta (TGF-β1) is a potent inductor of matrix metalloproteinase-9 (MMP-9) in transformed cells. Recently, Ski-interacting protein (SKIP) has been described as a regulator of TGF-β1 signal transduction, but its role in the induction of cell malignance by TGF-β1 has not been fully elucidated so far. In the present study, we analyzed the role of SKIP on TGF-β1-induced MMP-9 production. Mouse transformed keratinocytes (PDV) were stably transfected with SKIP antisense construct. We observed that SKIP depletion provoked an enhancement in the expression of MMP-9 in response to TGF-β1 treatment. The downregulation of SKIP produced an enhancement in TGF-β1-activated ERK1,2 MAP kinase as well as increased transactivation of downstream Elk1 transcription factor. The increased MMP-9 production in response to TGF-β1 was dependent of MAPK activation as PD98059, an MEK inhibitor, reduced MMP-9 expression in SKIP antisense transfected cells. Thus, we propose SKIP as a regulatory protein in TGF-β1-induced MMP-9 expression acting by controlling ERK1,2 signaling in transformed cells.


2017 ◽  
Vol 49 (2) ◽  
pp. 87
Author(s):  
Ramadhan Hardani Putra ◽  
Eha Renwi Astuti ◽  
Rini Devijanti Ridwan

Background: Radiographic examination is often used in dentistry to evaluate tooth extraction complications. X-ray used in radiographic examination, however, has negative effects, including damage to DNA and inflammatory response during wound healing process. Purpose: This study aimed to analyze the effects of X-ray irradiation on transforming growth factor beta 1 (TGF-ß1) expression and number of inflammatory cells in tooth extraction sockets. Method: Thirty rats were divided into three groups, which consist of control group (with a radiation of 0 mSv), treatment group 1 (with a radiation of 0.08 mSv), and treatment group 2 (with a radiation of 0.16 mSv). These rats in each group were sacrificed on days 3 and 5 after treatment. Inflammatory cells which were observed in this research were PMN, macrophages, and lymphocytes. Histopathological and immunohistochemical examinations were used to calculate the number of inflammatory cells and TGF-ß1 expression. Obtained data were analyzed using SPSS 16.0 software with one way ANOVA and Tukey’s HSD tests. Result: There was no significant decrease in the number of PMN. On the other hand, there were significant decreases in the number of macrophages and lymphocytes in the sacrificed group on day-5 with the radiation of 0.16 mSv. Similarly, the most significant decreased expression of TGF-ß1 was found in the group sacrificed on day 5 with the radiation of 0.16 mSv. Conclusion: X-ray irradiation with 0.08 mSv and 0.16 mSv doses can decrease TGF-ß1 expression and number of inflammatory cells in tooth extraction sockets on day 3 and 5 post extraction.


Sign in / Sign up

Export Citation Format

Share Document