scholarly journals Neutrophil migration inhibitory properties of polyunsaturated fatty acids. The role of fatty acid structure, metabolism, and possible second messenger systems.

1994 ◽  
Vol 93 (3) ◽  
pp. 1063-1070 ◽  
Author(s):  
A Ferrante ◽  
D Goh ◽  
D P Harvey ◽  
B S Robinson ◽  
C S Hii ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
M. García de Acilu ◽  
S. Leal ◽  
B. Caralt ◽  
O. Roca ◽  
J. Sabater ◽  
...  

Acute respiratory distress syndrome (ARDS) is defined as the acute onset of noncardiogenic edema and subsequent gas-exchange impairment due to a severe inflammatory process. Recent report on the prognostic value of eicosanoids in patients with ARDS suggests that modulating the inflammatory response through the use of polyunsaturated fatty acids may be a useful strategy for ARDS treatment. The use of enteral diets enriched with eicosapentaenoic acid (EPA) and gamma-linolenic acid (GLA) has reported promising results, showing an improvement in respiratory variables and haemodynamics. However, the interpretation of the studies is limited by their heterogeneity and methodology and the effect ofω-3 fatty acid-enriched lipid emulsion or enteral diets on patients with ARDS remains unclear. Therefore, the routine use ofω-3 fatty acid-enriched nutrition cannot be recommended and further large, homogeneous, and high-quality clinical trials need to be conducted to clarify the effectiveness ofω-3 polyunsaturated fatty acids.


2007 ◽  
Vol 32 (6) ◽  
pp. 1008-1024 ◽  
Author(s):  
Lindsay E. Robinson ◽  
Andrea C. Buchholz ◽  
Vera C. Mazurak

Metabolic syndrome (MetS) comprises an array of metabolic risk factors including abdominal obesity, dyslipidemia, hypertension, and glucose intolerance. Individuals with MetS are at elevated risk for diabetes and cardiovascular disease. Central to the etiology of MetS is an interrelated triad comprising inflammation, abdominal obesity, and aberrations in fatty acid metabolism, coupled with the more recently recognized changes in metabolism during the postprandial period. We review herein preliminary evidence regarding the role of dietary n-3 polyunsaturated fatty acids in modulating each of the components of the triad of adiposity, inflammation, and fatty acid metabolism, with particular attention to the role of the postprandial period as a contributor to the pathophysiology of MetS.


2009 ◽  
Vol 126 ◽  
pp. S240
Author(s):  
Noriko Osumi ◽  
Miho Matsumata ◽  
Nobuyuki Sakayori ◽  
Motoko Maekawa ◽  
Takeo Yoshikawa ◽  
...  

1978 ◽  
Vol 170 (2) ◽  
pp. 421-433 ◽  
Author(s):  
C. Roger Slack ◽  
P. Grattan Roughan ◽  
Nathan Balasingham

1. 3-sn-Phosphatidylcholine was identified as the major lipid in cotyledons from the developing seeds of soya bean, linseed and safflower when tissue was steamed before lipid extraction. The proportion of oleate in this lipid decreased markedly and that of the polyunsaturated C18 fatty acids increased when detached developing cotyledons were incubated for up to 3h. Similar but less pronounced changes occurred in diacylglycerol, which had a fatty acid composition resembling that of the 3-sn-phosphatidylcholine from cotyledons of the same species. 2. [1-14C]Acetate supplied to detached cotyledons was incorporated into the acyl moieties of mainly 3-sn-phosphatidylcholine, 1,2-diacylglycerol and triacylglycerol. Initially label was predominantly in oleate, but subsequently entered at accelerating rates the linoleoyl moieties of the above lipids in soya-bean and safflower cotyledons and the linoleoyl and linolenyl moieties of these lipids in linseed cotyledons. In pulse–chase experiments label was rapidly lost from the oleate of 3-sn-phosphatidylcholine and accumulated in the linoleoyl and linolenoyl moieties of this phospholipid and of the di- and tri-acylglycerols. 3. [2-3H]Glycerol was incorporated into the glycerol moieties of mainly 3-sn-phosphatidylcholine and di- and tri-acylglycerols of developing linseed and soya-bean cotyledons. The label entered the phospholipid and diacylglycerol at rates essentially linear with time from the moment the substrate was supplied, and entered the triacylglycerol at an accelerating rate. With linseed cotyledons the labelled glycerol was incorporated initially mainly into species of 3-sn-phosphatidylcholine and diacylglycerol that contained oleate, but accumulated with time in more highly unsaturated species. In pulse–chase experiments with linseed cotyledons, label was lost from both 3-sn-phosphatidylcholine and diacylglycerol, preferentially from the dioleoyl species, and accumulated in triacylglycerol, mainly in species containing two molecules of linolenate. 4. The results suggest a rapid turnover of 3-sn-phosphatidylcholine during triacylglycerol accumulation in developing oilseeds, and are consistent with the operation of a biosynthetic route whereby oleate initially esterified to the phospholipid is first desaturated, then polyunsaturated fatty acids transferred to triacylglycerol, via diacylglycerol. The possible role of oleoyl phosphatidylcholine as a substrate for oleate desaturation is discussed.


2018 ◽  
Vol 9 (6) ◽  
pp. 3481-3488 ◽  
Author(s):  
Mimi Tang ◽  
Yiping Liu ◽  
Lu Wang ◽  
Huande Li ◽  
Hualin Cai ◽  
...  

Low intake of omega-3 (Ω-3) polyunsaturated fatty acids (PUFAs) especially docosahexaenoic acid (DHA) is associated with postpartum depression.


1967 ◽  
Vol 50 (5) ◽  
pp. 1111-1118
Author(s):  
John L Iverson ◽  
R W Weik

Abstract The selective order in which methyl esters of fatty acids form urea complexes was correlated with the fatty acid structure. Detailed information about the preferential order in which inclusion compounds are formed was obtained by fractionating complex oils (e.g., butter, lanolin, cod liver). The preferential order was correlated with GLC retention times, and the detection of trace amounts of fatty acids (<0.1%) was possible. Urea adductability values (UAV) are proposed as a useful means of expressing preferential order of the formation of inclusion compounds


1963 ◽  
Vol 204 (5) ◽  
pp. 821-824 ◽  
Author(s):  
Alvin M. Gelb ◽  
Jacques I. Kessler

The effect of chain length and degree of unsaturation of fatty acids (FA) on in vitro esterification by slices of hamster small intestine was observed in a medium containing C14-labeled FA. After incubation, lipids were extracted and separated and the radioactivity in the esterified lipids was measured. Comparative experiments, in which results were expressed as per cent of substrate esterified per 100 mg tissue, indicate that for saturated FA, maximal esterification occurred with myristic acid, 14 carbons. As chain length was either increased or decreased, percentage esterification decreased. FA with 8 carbons or less were only minimally esterified. Among 18-carbon FA, two unsaturated bonds significantly decreased percentage esterification, although one unsaturated bond did not. These results suggest that, at least in vitro, the small bowel esterifies FA at varying rates depending upon chain length and degree of unsaturation. These differences are in the same direction as differences in absorption and partition of FA in vivo previously reported by others.


Sign in / Sign up

Export Citation Format

Share Document