Some Effects of Vertical Wind Shear on Thunderstorm Structure *

1949 ◽  
Vol 30 (5) ◽  
pp. 168-175 ◽  
Author(s):  
Horace R. Byers ◽  
Louis J. Battan

Observations of thunderclouds obtained with a 3-cm height-finding radar set are used to obtain a description of the vertical shear of thunderclouds. Several photographs are given which show the shearing of the radar clouds. A scattergram of wind shear plotted against echo shear is presented and shows that the two variables are related, with the former exceeding the latter in almost all cases. Scatter-diagrams are given which verify that strong vertical wind shear tends to restrict the growth of thunderstorms. A series of radar cross sections illustrates the displacement of the upper part of a thundercloud which is subjected to wind shear, and the growth of another cloud column from the lower part of the thundercloud.

2006 ◽  
Vol 63 (1) ◽  
pp. 341-354 ◽  
Author(s):  
John Molinari ◽  
Peter Dodge ◽  
David Vollaro ◽  
Kristen L. Corbosiero ◽  
Frank Marks

Abstract The downshear reformation of Tropical Storm Gabrielle (2001) was investigated using radar reflectivity and lightning data that were nearly continuous in time, as well as frequent aircraft reconnaissance flights. Initially the storm was a marginal tropical storm in an environment with strong 850–200-hPa vertical wind shear of 12–13 m s−1 and an approaching upper tropospheric trough. Both the observed outflow and an adiabatic balance model calculation showed that the radial-vertical circulation increased with time as the trough approached. Convection was highly asymmetric, with almost all radar return located in one quadrant left of downshear in the storm. Reconnaissance data show that an intense mesovortex formed downshear of the original center. This vortex was located just south of, rather than within, a strong downshear-left lightning outbreak, consistent with tilting of the horizontal vorticity associated with the vertical wind shear. The downshear mesovortex contained a 972-hPa minimum central pressure, 20 hPa lower than minimum pressure in the original vortex just 3 h earlier. The mesovortex became the new center of the storm, but weakened somewhat prior to landfall. It is argued that dry air carried around the storm from the region of upshear subsidence, as well as the direct effects of the shear, prevented the reformed vortex from continuing to intensify. Despite the subsequent weakening of the reformed center, it reached land with greater intensity than the original center. It is argued that this intensification process was set into motion by the vertical wind shear in the presence of an environment with upward motion forced by the upper tropospheric trough. In addition, the new center formed much closer to the coast and made landfall much earlier than predicted. Such vertical-shear-induced intensity and track fluctuations are important to understand, especially in storms approaching the coast.


2020 ◽  
Vol 12 (21) ◽  
pp. 3610
Author(s):  
Song Yang ◽  
Richard Bankert ◽  
Joshua Cossuth

The satellite passive microwave (PMW) sensor brightness temperatures (TBs) of all tropical cyclones (TCs) from 1987–2012 have been carefully calibrated for inter-sensor frequency differences, center position fixing using the Automated Rotational Center Hurricane Eye Retrieval (ARCHER) scheme, and application of the Backus–Gilbert interpolation scheme for better presentation of the TC horizontal structure. With additional storm motion direction and the 200–850 hPa wind shear direction, a unique and comprehensive TC database is created for this study. A reliable and detailed climatology for each TC category is analyzed and discussed. There is significant annual variability of the number of storms at hurricane intensity, but the annual number of all storms is relatively stable. Results based on the analysis of the 89 GHz horizontal polarization TBs over oceans are presented in this study. An eyewall contraction is clearly displayed with an increase in TC intensity. Three composition schemes are applied to present a reliable and detailed TC climatology at each intensity category and its geographic characteristics. The global composition relative to the North direction is not able to lead a realistic structure for an individual TC. Enhanced convection in the down-motion quadrants relative to direction of TC motion is obvious for Cat 1–3 TCs, while Cat 4–5 TCs still have a concentric pattern of convection within 200 km radius. Regional differences are evident for weak storms. Results indicate the direction of TC movement has more impact on weak storms than on Cat 4–5 TCs. A striking feature is that all TCs have a consistent pattern of minimum TBs at 89 GHz in the downshear left quadrant (DSLQ) for the northern hemisphere basins and in the downshear right quadrant (DSRQ) for the southern hemisphere basin, regarding the direction of the 200–850 hPa wind shear. Tropical depression and tropical storm have the minimum TBs in the downshear quadrants. The axis of the minimum TBs is slightly shifted toward the vertical shear direction. There is no geographic variation of storm structure relative to the vertical wind shear direction except over the southern hemisphere which shows a mirror image of the storm structure over the northern hemisphere. This study indicates that regional variation of storm structure relative to storm motion direction is mainly due to differences of the vertical wind shear direction among these basins. Results demonstrate the direction of the 200–850 hPa wind shear plays a critical role in TC structure.


2009 ◽  
Vol 9 (3) ◽  
pp. 10711-10775 ◽  
Author(s):  
M. Riemer ◽  
M. T. Montgomery ◽  
M. E. Nicholls

Abstract. An important roadblock to improved intensity forecasts for tropical cyclones (TCs) is our incomplete understanding of the interaction of a TC with the environmental flow. In this paper we re-visit the classical idealised numerical experiment of tropical cyclones (TCs) in vertical wind shear on an f-plane. We employ a set of simplified model physics – a simple bulk aerodynamic boundary layer scheme and "warm rain" microphysics – to foster better understanding of the dynamics and thermodynamics that govern the modification of TC intensity. A suite of experiments is performed with intense TCs in moderate to strong vertical shear. In all experiments the TC is resilient to shear but significant differences in the intensity evolution occur. The ventilation of the TC core with dry environmental air at mid-levels and the dilution of the upper-level warm core are two prevailing hypotheses for the adverse effect of vertical shear on storm intensity. Here we propose an alternative and arguably more effective mechanism how cooler and drier (lower θe) air – "anti-fuel" for the TC power machine – can enter the core region of the TC. Strong and persistent downdrafts flux low θe air from the lower and middle troposphere into the boundary layer, significantly depressing the θe values in the storm's inflow layer. Air with lower θe values enters the eyewall updrafts, considerably reducing eyewall θe values in the azimuthal mean. When viewed from the perspective of an idealised Carnot-cycle heat engine a decrease of storm intensity can thus be expected. Although the Carnot cycle model is – if at all – only valid for stationary and axisymmetric TCs, a strong correlation between the downward transport of low θe into the boundary layer and the intensity evolution offers further evidence in support of our hypothesis. The downdrafts that flush the inflow layer with low θe air are associated with a quasi-stationary region of convective activity outside the TC's eyewall. We show evidence that, to zero order, the formation of the convective asymmetry is driven by the balanced dynamical response of the TC vortex to the vertical shear forcing. Thus a close link is provided between the thermodynamic impact in the near-core boundary layer and the balanced dynamics governing the TC vortex evolution.


2020 ◽  
Author(s):  
Patrick Johannes Stoll ◽  
Thomas Spengler ◽  
Annick Terpstra ◽  
Rune Grand Graversen

Abstract. Polar lows are intense mesoscale cyclones that develop in polar marine air masses. Motivated by the large variety in their proposed intensification mechanisms, cloud structure, and ambient sub-synoptic environment, we use self-organising maps to classify polar lows. The method is applied to 370 polar lows in the North-East Atlantic, which were obtained by matching mesoscale cyclones from the ERA-5 reanalysis to polar lows registered by the Norwegian Meteorological Institute in the STARS dataset. ERA-5 reproduces 93 % of the STARS polar lows. We identify five different polar-low configurations, which are characterised by the vertical wind shear vector relative to the propagation direction. Four categories feature a strong shear with different orientations of the shear vector, whereas the fifth category contains conditions with weak shear. The orientation of the vertical-shear vector for the strong shear categories determines the dynamics of the systems, confirming the relevance of the previously identified categorisation into forward and reverse-shear polar lows. In addition, we expand the categorisation with right and left-shear polar lows that propagate towards colder and warmer environments, respectively. Polar lows in the four strong shear categories feature an up-shear tilt in the vertical, typical for the intensification through moist baroclinic processes. As weak-shear conditions mainly occur at the mature or lysis stage of polar lows, we find no evidence for hurricane-like development and propose that spirali-form PLs are most likely associated with a warm seclusion process.


2010 ◽  
Vol 138 (6) ◽  
pp. 2007-2037 ◽  
Author(s):  
Scott A. Braun

Abstract The existence of the Saharan air layer (SAL), a layer of warm, dry, dusty air frequently present over the tropical Atlantic Ocean, has long been appreciated. The nature of its impacts on hurricanes remains unclear, with some researchers arguing that the SAL amplifies hurricane development and with others arguing that it inhibits it. The potential negative impacts of the SAL include 1) vertical wind shear associated with the African easterly jet; 2) warm air aloft, which increases thermodynamic stability at the base of the SAL; and 3) dry air, which produces cold downdrafts. Multiple NASA satellite datasets and NCEP global analyses are used to characterize the SAL’s properties and evolution in relation to tropical cyclones and to evaluate these potential negative influences. The SAL is shown to occur in a large-scale environment that is already characteristically dry as a result of large-scale subsidence. Strong surface heating and deep dry convective mixing enhance the dryness at low levels (primarily below ∼700 hPa), but moisten the air at midlevels. Therefore, mid- to-upper-level dryness is not generally a defining characteristic of the SAL, but is instead often a signature of subsidence. The results further show that storms generally form on the southern side of the jet, where the background cyclonic vorticity is high. Based upon its depiction in NCEP Global Forecast System meteorological analyses, the jet often helps to form the northern side of the storms and is present to equal extents for both strengthening and weakening storms, suggesting that jet-induced vertical wind shear may not be a frequent negative influence. Warm SAL air is confined to regions north of the jet and generally does not impact the tropical cyclone precipitation south of the jet. Composite analyses of the early stages of tropical cyclones occurring in association with the SAL support the inferences from the individual cases noted above. Furthermore, separate composites for strongly strengthening and for weakening storms show few substantial differences in the SAL characteristics between these two groups, suggesting that the SAL is not a determinant of whether a storm will intensify or weaken in the days after formation. Key differences between these cases are found mainly at upper levels where the flow over strengthening storms allows for an expansive outflow and produces little vertical shear, while for weakening storms, the shear is stronger and the outflow is significantly constrained.


2015 ◽  
Vol 73 (1) ◽  
pp. 199-209 ◽  
Author(s):  
Usama Anber ◽  
Shuguang Wang ◽  
Adam Sobel

Abstract The authors investigate the effects of cloud–radiation interaction and vertical wind shear on convective ensembles interacting with large-scale dynamics in cloud-resolving model simulations, with the large-scale circulation parameterized using the weak temperature gradient approximation. Numerical experiments with interactive radiation are conducted with imposed surface heat fluxes constant in space and time, an idealized lower boundary condition that prevents wind–evaporation feedback. Each simulation with interactive radiation is compared to a simulation in which the radiative heating profile is held constant in the horizontal and in time and is equal to the horizontal-mean profile from the interactive-radiation simulation with the same vertical shear profile and surface fluxes. Interactive radiation is found to reduce mean precipitation in all cases. The magnitude of the reduction is nearly independent of the vertical wind shear but increases with surface fluxes. Deep shear also reduces precipitation, though by approximately the same amount with or without interactive radiation. The reductions in precipitation due to either interactive radiation or deep shear are associated with strong large-scale ascent in the upper troposphere, which more strongly exports moist static energy and is quantified by a larger normalized gross moist stability.


2006 ◽  
Vol 19 (12) ◽  
pp. 2969-2983 ◽  
Author(s):  
Anantha R. Aiyyer ◽  
Chris Thorncroft

Abstract The spatiotemporal variability of the 200–850-hPa vertical wind shear over the tropical Atlantic is examined for a period of 46 yr. This work extends and updates past studies by considering a longer data record as well as a tropospheric-deep measure of vertical wind shear. Composite fields are constructed to illustrate the spatial pattern of the large-scale circulation associated with the mean and extreme cases of vertical shear within the tropical Atlantic. The contemporaneous relationship of vertical shear with El Niño–Southern Oscillation (ENSO) and Sahel precipitation are also examined. While the ENSO–shear correlation appears to have slightly strengthened during the past decade, the Sahel–shear correlation has become significantly degraded. A combined empirical orthogonal function (EOF) analysis of the zonal and meridional components of the vertical shear reveals interannual and multidecadal modes. The leading EOF exhibits mainly interannual variability and is highly correlated with ENSO. The second EOF is associated with a multidecadal temporal evolution and is correlated with Sahel precipitation. Both EOFs correlate at the same level with tropical cyclones in the main development region of the tropical Atlantic.


2015 ◽  
Vol 72 (9) ◽  
pp. 3517-3536 ◽  
Author(s):  
Michael Riemer ◽  
Frédéric Laliberté

Abstract This study introduces a Lagrangian diagnostic of the secondary circulation of tropical cyclones (TCs), here defined by those trajectories that contribute to latent heat release in the region of high inertial stability of the TC core. This definition accounts for prominent asymmetries and transient flow features. Trajectories are mapped from the three-dimensional physical space to the (two dimensional) entropy–temperature space. The mass flux vector in this space subsumes the thermodynamic characteristics of the secondary circulation. The Lagrangian diagnostic is then employed to further analyze the impact of vertical wind shear on TCs in previously published idealized numerical experiments. One focus of this analysis is the classification and quantitative depiction of different pathways of environmental interaction based on thermodynamic properties of trajectories at initial and end times. Confirming results from previous work, vertical shear significantly increases the intrusion of low–equivalent potential temperature () air into the eyewall through the frictional inflow layer. In contrast to previous ideas, vertical shear decreases midlevel ventilation in these experiments. Consequently, the difference in eyewall between the no-shear and shear experiments is largest at low levels. Vertical shear, however, significantly increases detrainment from the eyewall and modifies the thermodynamic signature of the outflow layer. Finally, vertical shear promotes the occurrence of a novel class of trajectories that has not been described previously. These trajectories lose entropy at cold temperatures by detraining from the outflow layer and subsequently warm by 10–15 K. Further work is needed to investigate in more detail the relative importance of the different pathways for TC intensity change and to extend this study to real atmospheric TCs.


2014 ◽  
Vol 142 (2) ◽  
pp. 508-529 ◽  
Author(s):  
Matthew D. Parker

Abstract Three-dimensional composite analyses using 134 soundings from the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) reveal the nature of near-storm variability in the environments of supercell thunderstorms. Based upon the full analysis, it appears that vertical wind shear increases as one approaches a supercell within the inflow sector, providing favorable conditions for supercell maintenance (and possibly tornado formation) despite small amounts of low-level cooling near the storm. The seven analyzed tornadic supercells have a composite environment that is clearly more impressive (in terms of widely used metrics) than that of the five analyzed nontornadic supercells, including more convective available potential energy (CAPE), more vertical wind shear, higher boundary layer relative humidity, and lower tropospheric horizontal vorticity that is more streamwise in the near-storm inflow. The widely used supercell composite parameter (SCP) and significant tornado parameter (STP) summarize these differences well. Comparison of composite environments from early versus late in supercells' lifetimes reveals only subtle signs of storm-induced environmental modification, but potentially important changes associated with the evening transition toward a cooler and moister boundary layer with enhanced low-level vertical shear. Finally, although this study focused primarily on the composite inflow environment, it is intriguing that the outflows sampled by VORTEX2 soundings were surprisingly shallow (generally ≤500 m deep) and retained considerable CAPE (generally ≥1000 J kg−1). The numerous VORTEX2 near-storm soundings provide an unprecedented observational view of supercell–environment interactions, and the analyses are ripe for use in a variety of future studies.


2017 ◽  
Vol 145 (1) ◽  
pp. 361-378 ◽  
Author(s):  
Peter M. Finocchio ◽  
Sharanya J. Majumdar

Abstract A statistical analysis of tropical cyclone (TC) environmental wind profiles is conducted in order to better understand how vertical wind shear influences TC intensity change. The wind profiles are computed from global atmospheric reanalyses around the best track locations of 7554 TC cases in the Northern Hemisphere tropics. Mean wind profiles within each basin exhibit significant differences in the magnitude and direction of vertical wind shear. Comparisons between TC environments and randomly selected “non-TC” environments highlight the synoptic regimes that support TCs in each basin, which are often characterized by weaker deep-layer shear. Because weaker deep-layer shear may not be the only aspect of the environmental flow that makes a TC environment more favorable for TCs, two new parameters are developed to describe the height and depth of vertical shear. Distributions of these parameters indicate that, in both TC and non-TC environments, vertical shear most frequently occurs in shallow layers and in the upper troposphere. Linear correlations between each shear parameter and TC intensity change show that shallow, upper-level shear is slightly more favorable for TC intensification. But these relationships vary by basin and neither parameter independently explains more than 5% of the variance in TC intensity change between 12 and 120 h. As such, the shear height and depth parameters in this study do not appear to be viable predictors for statistical intensity prediction, though similar measures of midtropospheric vertical wind shear may be more important in particularly challenging intensity forecasts.


Sign in / Sign up

Export Citation Format

Share Document