A Record Rainfall at Okinawa

1959 ◽  
Vol 40 (12) ◽  
pp. 609-612 ◽  
Author(s):  
C. L. Jordan ◽  
Michio Shiroma

A maximum rainfall of 38 in. was recorded during an 18-hr period as a typhoon passed over the island of Okinawa in September 1956. The observed weather conditions during the typhoon passage are discussed in relationship to the observed rainfall distribution on the island and some comments are offered on the problems of evaluating the reliability of measurements of very heavy rainfall.

2017 ◽  
Vol 56 (10) ◽  
pp. 2883-2901 ◽  
Author(s):  
Zifeng Yu ◽  
Yuqing Wang ◽  
Haiming Xu ◽  
Noel Davidson ◽  
Yandie Chen ◽  
...  

AbstractTRMM satellite 3B42 rainfall estimates for 133 landfalling tropical cyclones (TCs) over China during 2001–15 are used to examine the relationship between TC intensity and rainfall distribution. The rain rate of each TC is decomposed into axisymmetric and asymmetric components. The results reveal that, on average, axisymmetric rainfall is closely related to TC intensity. Stronger TCs have higher averaged peak axisymmetric rain rates, more averaged total rain, larger averaged rain areas, higher averaged rain rates, higher averaged amplitudes of the axisymmetric rainfall, and lower amplitudes of wavenumbers 1–4 relative to the total rainfall. Among different TC intensity change categories, rapidly decaying TCs show the most rapid decrease in both the total rainfall and the axisymmetric rainfall relative to the total rain. However, the maximum total rain, maximum rain area, and maximum rain rate are not absolutely dependent on TC intensity, suggesting that stronger TCs do not have systematically higher maximum rain rates than weaker storms. Results also show that the translational speed of TCs has little effect on the asymmetric rainfall distribution in landfalling TCs. The maximum rainfall of both the weaker and stronger TCs is generally located downshear to downshear left. However, when environmental vertical wind shear (VWS) is less than 5 m s−1, the asymmetric rainfall maxima are more frequently located upshear and onshore, suggesting that in weak VWS environments the coastline could have a significant effect on the rainfall asymmetry in landfalling TCs.


2007 ◽  
Vol 38 (1) ◽  
pp. 59-77 ◽  
Author(s):  
Pratap Singh ◽  
Umesh K. Haritashya ◽  
Naresh Kumar

In spite of the vital role of high altitude climatology in melting of snow and glaciers, retreat or advancement of glaciers, flash floods, erosion and sediment transport, etc., weather conditions are not much studied for the high altitude regions of Himalayas. In this study, a comprehensive meteorological analysis has been made for the Gangotri Meteorological Station (Bhagirathi Valley, Garhwal Himalayas) using data observed for four consecutive melt seasons (2000–2003) covering a period from May to October for each year. The collected meteorological data includes rainfall, temperature, wind speed and direction, relative humidity, sunshine hours and evaporation. The results and their distribution over the different melt seasons were compared with available meteorological records for Dokriani Meteorological Station (Dingad Valley, Garhwal Himalayas) and Pyramid Meteorological Station (Khumbu Valley, Nepal Himalayas). The magnitude and distribution of temperature were found to be similar for different Himalayan regions, while rainfall varied from region to region. The influence of the monsoon was meagre on the rainfall in these areas. July was recorded to be the warmest month for all the regions and, in general, August had the maximum rainfall. For all the stations, daytime up-valley wind speeds were 3 to 4 times stronger than the nighttime down-valley wind speeds. It was found that the Gangotri Glacier area experienced relatively low humidity and high evaporation rates as compared to other parts of the Himalayas. Such analysis reveals the broad meteorological characteristics of the high altitude areas of the Central Himalayan region.


MAUSAM ◽  
2021 ◽  
Vol 58 (1) ◽  
pp. 1-8
Author(s):  
O. P. SINGH ◽  
B. LAL ◽  
ONKARI PRASAD

ABSTRACT. The trials of district level forecasts yielded encouraging results during 2005 monsoon. The purpose of this paper is to document the methodology followed in the value addition during the periods of monsoon depressions and storms. The focus is on the use of Mean Sea Level (MSL) positions and the 850 hPa circulation features predicted by different model centres, especially the European Centre for Medium-Range Weather Forecasts (ECMWF). The ECMWF-predicted 72 hr MSL position of the monsoon depression centre was found to be significantly correlated to the actual position of the system and the central location of the realized rainfall zone associated with the system. Even the predicted location of the system at 850 hPa by the ECMWF has been found useful in identifying the districts that received heaviest rainfall associated with the monsoon systems.MM5 and T-80 – predicted locations of the system at 850 hPa yielded lower correlations with the location of the actual rainfall zone associated with the system. As ECMWF – predicted rainfall was not available the rainfall predicted by MM5 and T-80 were used in the computations of the correlations with actual rainfall amounts associated with monsoon depressions and storms. The correlations between MM5 and T-80 – predicted average and maximum rainfall associated with systems and corresponding actual were poor. Though it is not difficult to identify the districts that are likely to be affected by the heavy rainfall associated with monsoon depressions/storms, the prediction of exact rainfall amount for each district (beyond heavy, very heavy or exceptionally heavy categories) is difficult from the model outputs which makes such forecasts a very challenging task. Therefore, the value addition using other inputs such as satellite information, synoptic charts, climatology etc. are very useful in the prediction of rainfall amounts associated with monsoon systems.


2021 ◽  
Vol 3 (2) ◽  
pp. 20-32
Author(s):  
Hassan Lashkari ◽  
Neda Esfandiari ◽  
Abbas Kashani

Atmospheric rivers are long, narrow, concentrated structures of water vapour that are highly associated with rainfall and floods. To identify and introduce the highest rainfall occurring during the presence of atmospheric rivers from November to April (2007-2018) while showing the importance of this phenomenon in creating super heavy rainfall and introducing the areas affected by it, analyzed the synoptic factors affecting them slowly. In order to identify atmospheric rivers, vertical integral data of water vapour flow were used and thresholds were documented on them. The date of occurrence of each atmospheric river with their daily rainfall was examined and ten of the highest rainfall events Station (equivalent to the 95th percentile of maximum rainfall) related to atmospheric rivers was introduced and analyzed. It is found that the South Gram has been directly and indirectly the main source of atmospheric rivers associated with heavy rainfall. The source of most of these atmospheric rivers is at the peak of the Red Sea, the Gulf of Aden and the Horn of Africa. Synonymously, the origins of 7 cases from Atmospheric rivers have been of the Sudanese low pressure and in the remaining three cases have been integrated systems. In Sudanese systems, the predominant structure of the meridional inclination jet and in Integration systems has been oriented. Due to the dominance of a strong upstream current in the vicinity of the highest flux, moisture of heavy convective currents has caused super heavy rainfall and the station with the highest rainfall in the east and North West of the negative omega field or upstream streams.


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 663
Author(s):  
Katarzyna Wartalska ◽  
Andrzej Kotowski

One of the most important problems while modeling stormwater drainage systems is the choice of rainfall scenario, which will take into account the real rainfall distribution over time. This problem is particularly significant due to the climate change observed in recent decades, manifested, among others, in the increase in the precipitation intensities or changes in their structure. Taking into account these forecasts is essential to safely design sewer systems and their proper operation. The work aims to verify the Euler type II standard rainfall used so far to model sewage systems in Poland and to develop the forecasted form of this pattern in the perspective of 2050. Precipitation data from measurement stations in Wrocław were used as research material. The prediction model of maximum rainfall amounts allowed to determine the forecasted increase in intensities of short-term rainfall (for the occurrence frequencies recommended by Standard EN 752:2017 for the dimensioning and modeling of sewage systems). On this basis, model hyetographs forecasted for 2050 were prepared for Wrocław. Their choice—as a future rainfall load in hydrodynamic modeling—will allow one to meet the requirements for the frequency of flooding occurrence from sewer systems and their safe operation over several decades.


2020 ◽  
Author(s):  
Hyojin Han ◽  
YoungYoung Park ◽  
Ji-Hyeon Kim ◽  
Yongjun Ahn ◽  
KyongJun Lee ◽  
...  

<p>The Korea Meteorological Administration (KMA) set a main policy goal as “Impact-based forecasting (IBF) for mitigation of meteorological disaster risks” in 2016. As a first step toward the goal, each regional office of the KMA operated a prototype of impact-based forecast service tailored to major severe weather conditions in each region from 2016 to 2018. As a result, the prototype service was found to contribute to reducing meteorological disasters in those regions. In order to determine quantitative impacts caused by meteorological disasters, a multi-ministerial R&D project was began in 2018 which is aiming to develop the Hazard Impact Models (HIM) for heavy rainfall and heatwave/coldwave. The project will be completed by the end of 2020, and the developed HIM will be operated for the KMA operational IBF. <br>The KMA officially launched heatwave IBF service from June to September 2019 in order to support effective reduction of heatwave impacts. The KMA provided risk levels in different colors (attention-green, caution-yellow, warning-orange, danger-red), impact information and response tips for seven sectors—health, industry, livestock, aquaculture, agriculture, transportation and electric power—considering the regional characteristics. This information was disseminated to the public on the KMA's website. It was also provided to disaster response related agencies through the Meteorological Information Portal Service System for Disaster Prevention, as well as to local governments’ disaster response managers and officials managing the socially vulnerable people through mobile text messages. According to user satisfaction survey, a great number of users showed positive responses to the KMA heatwave IBF. Based on the success of heatwave IBF, coldwave IBF trial service was offered from December 2019 to March 2020. In addition, KMA plans to expand IBF to other high-impact weathers such as typhoon, heavy snow, heavy rainfall, and so on.</p>


2011 ◽  
Vol 50 (4) ◽  
pp. 806-825 ◽  
Author(s):  
Shiguang Miao ◽  
Fei Chen ◽  
Qingchun Li ◽  
Shuiyong Fan

AbstractFinescale simulations (with 500-m grid spacing) using the Weather Research and Forecasting Model (WRF) were used to investigate impacts of urban processes and urbanization on a localized, summer, heavy rainfall in Beijing. Evaluation using radar and gauge data shows that this configuration of WRF with three-dimensional variational data assimilation of local weather and GPS precipitable water data can simulate this event generally well. Additional WRF simulations were conducted to test the sensitivity of simulation of this storm to different urban processes and urban land-use scenarios. The results confirm that the city does play an important role in determining storm movement and rainfall amount. Comparison of cases with and without the presence of the city of Beijing with respect to the approaching storm shows that the urban effect seems to lead to the breaking of the squall line into convective cells over the urban area. The change of precipitation amount depends on the degree of urbanization (i.e., the change over time in the extent of Beijing city). Model results show that an early urbanization prior to 1980 decreases the maximum rainfall, whereas further urbanization in Beijing is conducive to bifurcating the path of rainfall. According to sensitivity results with a single-layer urban canopy model, the thermal transport (sensible and latent heating) induced by the presence of an urban area apparently is more important than associated momentum transport, with latent and sensible heating apparently having equally important roles in the modification of simulated precipitation. Urban surfaces tend to cause the rainfall to be more locally concentrated. High-rise urban cores may bifurcate the path of rainfall as well as increase the area percentage of heavy rainfall.


2018 ◽  
Vol 96A (0) ◽  
pp. 35-49 ◽  
Author(s):  
Yoshihito SETO ◽  
Hitoshi YOKOYAMA ◽  
Tsuyoshi NAKATANI ◽  
Haruo ANDO ◽  
Nobumitsu TSUNEMATSU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document