Meteorological study for Gangotri Glacier and its comparison with other high altitude meteorological stations in central Himalayan region

2007 ◽  
Vol 38 (1) ◽  
pp. 59-77 ◽  
Author(s):  
Pratap Singh ◽  
Umesh K. Haritashya ◽  
Naresh Kumar

In spite of the vital role of high altitude climatology in melting of snow and glaciers, retreat or advancement of glaciers, flash floods, erosion and sediment transport, etc., weather conditions are not much studied for the high altitude regions of Himalayas. In this study, a comprehensive meteorological analysis has been made for the Gangotri Meteorological Station (Bhagirathi Valley, Garhwal Himalayas) using data observed for four consecutive melt seasons (2000–2003) covering a period from May to October for each year. The collected meteorological data includes rainfall, temperature, wind speed and direction, relative humidity, sunshine hours and evaporation. The results and their distribution over the different melt seasons were compared with available meteorological records for Dokriani Meteorological Station (Dingad Valley, Garhwal Himalayas) and Pyramid Meteorological Station (Khumbu Valley, Nepal Himalayas). The magnitude and distribution of temperature were found to be similar for different Himalayan regions, while rainfall varied from region to region. The influence of the monsoon was meagre on the rainfall in these areas. July was recorded to be the warmest month for all the regions and, in general, August had the maximum rainfall. For all the stations, daytime up-valley wind speeds were 3 to 4 times stronger than the nighttime down-valley wind speeds. It was found that the Gangotri Glacier area experienced relatively low humidity and high evaporation rates as compared to other parts of the Himalayas. Such analysis reveals the broad meteorological characteristics of the high altitude areas of the Central Himalayan region.

2020 ◽  
Vol 4 (1) ◽  
pp. 15-22
Author(s):  
Muhammad Taqui ◽  
Jabir Hussain Syed ◽  
Ghulam Hassan Askari

Pakistan’s largest city, Karachi, which is industrial centre and economic hub needs focus in research and development of every field of Engineering, Science and Technology. Urbanization and industrialization is resulting bad weather conditions which prolongs until a climate change. Since, Meteorology serves as interdisciplinary field of study, an analytical study of real and region-specific meteorological data is conducted which focuses on routine, extreme and engineering meteorology of metropolitan city Karachi. Results of study endorse the meteorological parameters relationship and establish the variability of those parameters for Karachi Coastal Area. The rise of temperature, decreasing trend of atmospheric pressure, increment in precipitation and fall in relative humidity depict the effects of urbanization and industrialization. The recorded extreme maximum temperature of 45.50C (on June 11, 1988) and the extreme minimum temperature of 4.5 0C(on January 1, 2007) is observed at Karachi south meteorological station. The estimated temperature rise in 32 years is 0.9 0C, which is crossing the Intergovernmental Panel on Climate Change (IPCC) predicted/estimated limit of 2oC rise per century. The maximum annual precipitation of 487.0mm appearing in 1994 and the minimum annual precipitation of 2.5mm appearing in 1987 is observed at same station which is representative meteorological station for Karachi Coast. Further Engineering meteorological parameters for heating ventilation air condition (HVAC) system design for industrial purpose are deduced as supporting data for coastal area site study for industrial as well as any follow-up engineering work in the specified region.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
K. Pugh ◽  
M. M. Stack

AbstractErosion rates of wind turbine blades are not constant, and they depend on many external factors including meteorological differences relating to global weather patterns. In order to track the degradation of the turbine blades, it is important to analyse the distribution and change in weather conditions across the country. This case study addresses rainfall in Western Europe using the UK and Ireland data to create a relationship between the erosion rate of wind turbine blades and rainfall for both countries. In order to match the appropriate erosion data to the meteorological data, 2 months of the annual rainfall were chosen, and the differences were analysed. The month of highest rain, January and month of least rain, May were selected for the study. The two variables were then combined with other data including hailstorm events and locations of wind turbine farms to create a general overview of erosion with relation to wind turbine blades.


Author(s):  
Niket M. Telang ◽  
Charles M. Minervino ◽  
Paul G. Norton

Elegantly poised over the Mobile River, the twin pylons and the semi-harped cable stays of the Cochrane Bridge subtly complement the vast and undulating landscape of the Mobile Bay as the bridge carries US Route 90 over the Mobile River in Alabama. In February 1998, light rain drizzled on the bridge, and a weather station nearby recorded wind speeds of about 48 km/h (30 mph). Under these seemingly mild weather conditions, the normally immobile cable stays started to vibrate, and within moments, these nascent vibrations reached amplitudes of more than 1.2 m (4 ft). Alarmed by this event, the Alabama Department of Transportation (ALDOT) took immediate action to ensure the continued safety and serviceability of the bridge. A team of consultants was selected by ALDOT to investigate mitigation measures for the large-amplitude cable-stay vibrations. The fast-tracked comprehensive program planned and implemented to inspect, test, document, and evaluate the effects of the large-amplitude vibrations and the recommendation of retrofit measures that would limit future occurrences of such cable-stay vibrations on the Cochrane Bridge are described in detail.


2012 ◽  
Vol 610-613 ◽  
pp. 1033-1040
Author(s):  
Wei Dai ◽  
Jia Qi Gao ◽  
Bo Wang ◽  
Feng Ouyang

Effects of weather conditions including temperature, relative humidity, wind speed, wind and direction on PM2.5 were studied using statistical methods. PM2.5 samples were collected during the summer and the winter in a suburb of Shenzhen. Then, correlations, hypothesis test and statistical distribution of PM2.5 and meteorological data were analyzed with IBM SPSS predictive analytics software. Seasonal and daily variations of PM2.5 have been found and these mainly resulted from the weather effects.


Időjárás ◽  
2021 ◽  
Vol 125 (2) ◽  
pp. 167-192
Author(s):  
Karolina Szabóné André ◽  
Judit Bartholy ◽  
Rita Pongrácz ◽  
József Bór

Cold air pool (CAP) is a winter-time, anticyclonic weather event: a cold air layer confined by the topography and warm air aloft. If its duration is more than one day, then it is called persistent cold air pool (PCAP). CAPs are mainly examined in small basins and valleys. Fewer studies pay attention to PCAPs in much larger basins (with an area of more than 50 000 km2), and it is not evident how effective the existing numerical definitions are in cases of extensive PCAP events. A possible method of identifying PCAPs in a large basin is to identify PCAP weather conditions at different measuring sites across the basin. If there are PCAP weather conditions at most of the sites, then it is likely to be an extensive PCAP. In this work, we examine which of the documented CAP definitions can be used for reliable local detection of CAP conditions. Daily weather reports and meteorological data from two locations in the 52 000 km2 sized Great Hungarian Plain have been used to obtain a reference set of days with PCAP weather conditions during two consecutive winter months. Several numerical CAP definitions were compared for their performance in recognizing the presence of PCAP weather conditions using radiosonde measurements and reanalysis data. The lowest error was produced by using the heat deficit (HD) method. So this is considered the most suitable method for local identification of PCAPs in the Great Hungarian Plain.


2021 ◽  
Vol 193 (10) ◽  
Author(s):  
Jairam Singh Yadav ◽  
Sameer K. Tiwari ◽  
Anshuman Misra ◽  
Santosh K. Rai ◽  
Ravi K. Yadav

1995 ◽  
Vol 34 (1) ◽  
pp. 49-67 ◽  
Author(s):  
R. Guardans ◽  
I. Palomino

Abstract A large set of hourly meteorological data from seven towers deployed in Montesina Valley (Cordoba, Spain) is studied in relation to the prevailing synoptic situation. The complete collection of daily synoptic maps for 1985-90 has been classified in seven basic weather patterns. First-order transition probabilities and weatherpattern persistences have been calculated for each of the patterns. The behavior of the local valley wind field is described as a function of the synoptic patterns. The work reported here, based on observations of the characteristic time and space patterns of flow in the valley under different synoptic conditions, has made it possible to obtain a set of empirical rules and regression functions to produce forecasts of the local wind field as a function of the synoptic situation and the hour of the day to be used in the emergency plans. The result of this work is currently being implemented in an atmospheric dispersion module of an expert system that will be used as a tool to predict the evolution of accidental and routine hazardous emissions to the atmosphere in complex terrain such as valleys and coastal areas.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012149
Author(s):  
M Mendel

Abstract The most important meteorological data are:ambient temperature, precipitation quantity, air humidity, amount and type of clouds, atmospheric pressure, wind direction and speed, visibility, weather phenomena. These coefficients impact the effectiveness of various combat activities, especially those conducted in an open space. Knowledge of future weather conditions is essential for planning the location, calculating times, choice of means, and other aspects relevant to the upcoming operations. Taking weather conditions into account is vital, specifically when it comes to planning combat operations, where the accuracy in cooperation is of paramount importance. Rocket forces and artillery is a particular type of armed forces where weather conditions are critical. The effectiveness of artillery depends on ballistic calculation precision, and so knowledge of atmospheric conditions is fundamental. Atmospheric data are collected from sounding using a single probe attached to a balloon. It is generally known that particular meteorological parameters change in a smooth spatial manner depending on various coefficients. Information about the atmosphere collected by a single probe may be insufficient, due to the possibility of a balloon drifting away from the area of interest, and the calculations are based on data received from its probe. In this paper, I will suggest a method for preparing artillery use meteorologically, which takes into account the distribution of particular meteorological coefficients over a given area.


Author(s):  
P. Verma ◽  
S. K. Ghosh

<p><strong>Abstract.</strong> This study presents a comparison of new generation weather observatory satellites Global Precipitation Measurement (GPM) Integrated Multi-satellite Retrievals for GPM (IMERG) rainfall products with field data collected for Gangotri glacier in India. The meteorological analysis of rainfall estimates has been performed on GPM IMERG Final, Late and Early precipitation products available at daily scale with a spatial resolution of 0.1&amp;deg;<span class="thinspace"></span>&amp;times;<span class="thinspace"></span>0.1&amp;deg; for melting season from May to September for the year 2014 and 2015 respectively. The comparison of satellite products with field data was done using correlation coefficient and standard anomaly. The Late run curve showed a high degree of similarity with final run curve while early run showed variation from them. The satellite meteorological data correctly identified non-rainy days with an average of &amp;sim;86.7%, &amp;sim;67.5% and &amp;sim;95% for pre-monsoon, monsoon and post-monsoon season respectively. The rmse for final run data product for 2014 and 2015 are 4.5, 1.23, 1.55, 1.24, 0.8 and 1.14, 7.1, 1.82, 1.15, 1.52 from May to September respectively. Overall, it has been observed that for medium to heavy rainfall final run estimates are close to field data and for light to medium rainfall late run estimates are close. Similar results have been obtained from both datasets for non-rainy days in the study area.</p>


Sign in / Sign up

Export Citation Format

Share Document