scholarly journals Assessment of Cloud Cover Characteristics in Satellite Datasets and Reanalysis Products for Greenland

2008 ◽  
Vol 21 (9) ◽  
pp. 1837-1849 ◽  
Author(s):  
J. A. Griggs ◽  
J. L. Bamber

Abstract Clouds have an important controlling influence on the radiation balance, and hence surface melting, over the Greenland ice sheet and need to be classified to derive reliable albedo estimates from visible imagery. Little is known, however, about the true cloud cover characteristics for the largest island on Earth, Greenland. Here, an attempt is made to address this knowledge gap by examining cloud characteristics, as determined by three complementary satellites sensors: the Advanced Very High Resolution Radiometer (AVHRR), the Along Track Scanning Radiometer-2 (ATSR-2), and the Moderate Resolution Imaging Spectroradiometer (MODIS). The first provides a multidecadal time series of clouds, albedo, and surface temperature, and is available, in the form of the extended AVHRR Polar Pathfinder dataset (APP-x), as a homogeneous, consistent dataset from 1982 until 2004. APP-x data, however, are also the most challenging to cloud classify over snow-covered terrain, due to the limited spectral capabilities of the instrument. ATSR-2 permits identification and classification using stereophotogrammetric techniques and MODIS has enhanced spectral sampling in the visible and thermal infrared but over more limited time periods. The spatial cloud fractions from the three sensors are compared and show good agreement in terms of both magnitude and spatial pattern. The cloud fractions, and inferred patterns of accumulation, are then assessed from three commonly used reanalysis datasets: NCEP–NCAR, the second NCEP–Department of Energy (DOE) Atmospheric Model Intercomparison Project (AMIP-II), and the 40-yr ECMWF Re-Analysis (ERA-40). Poor agreement between the reanalysis datasets is found. NCEP–DOE AMIP-II produces a cloud fraction similar to that observed by the satellites. NCEP–NCAR and ERA-40, however, bear little similarity to the cloud fractions derived from the satellite observations. This suggests that they may produce poor accumulation estimates over the ice sheet and poor estimates of radiation balance. Using these reanalysis data to force a mass balance model of the ice sheet, without appropriate downscaling and correction for the substantial biases present, may, therefore, produce substantial errors in surface melt rate estimates.

2021 ◽  
Vol 13 (2) ◽  
pp. 227
Author(s):  
Arthur Elmes ◽  
Charlotte Levy ◽  
Angela Erb ◽  
Dorothy K. Hall ◽  
Ted A. Scambos ◽  
...  

In mid-June 2019, the Greenland ice sheet (GrIS) experienced an extreme early-season melt event. This, coupled with an earlier-than-average melt onset and low prior winter snowfall over western Greenland, led to a rapid decrease in surface albedo and greater solar energy absorption over the melt season. The 2019 melt season resulted in significantly more melt than other recent years, even compared to exceptional melt years previously identified in the moderate-resolution imaging spectroradiometer (MODIS) record. The increased solar radiation absorbance in 2019 warmed the surface and increased the rate of meltwater production. We use two decades of satellite-derived albedo from the MODIS MCD43 record to show a significant and extended decrease in albedo in Greenland during 2019. This decrease, early in the melt season and continuing during peak summer insolation, caused increased radiative forcing of the ice sheet of 2.33 Wm−2 for 2019. Radiative forcing is strongly influenced by the dramatic seasonal differences in surface albedo experienced by any location experiencing persistent and seasonal snow-cover. We also illustrate the utility of the newly developed Landsat-8 albedo product for better capturing the detailed spatial heterogeneity of the landscape, leading to a more refined representation of the surface energy budget. While the MCD43 data accurately capture the albedo for a given 500 m pixel, the higher spatial resolution 30 m Landsat-8 albedos more fully represent the detailed landscape variations.


2010 ◽  
Vol 56 (199) ◽  
pp. 813-821 ◽  
Author(s):  
Daniel McGrath ◽  
Konrad Steffen ◽  
Irina Overeem ◽  
Sebastian H. Mernild ◽  
Bent Hasholt ◽  
...  

AbstractMeltwater runoff is an important component of the mass balance of the Greenland ice sheet (GrIS) and contributes to eustatic sea-level rise. In situ measurements of river runoff at the ˜325 outlets are nonexistent due to logistical difficulties. We develop a novel methodology using satellite observations of sediment plumes as a proxy for the onset, duration and volume of meltwater runoff from a basin of the GrIS. Sediment plumes integrate numerous poorly constrained processes, including meltwater refreezing and supra- and englacial water storage, and are formed by meltwater that exits the GrIS and enters the ocean. Plume characteristics are measured in Moderate Resolution Imaging Spectroradiometer (MODIS, band 1, 250 m) satellite imagery during the 2001-08 melt seasons. Plume formation and cessation in Kangerlussuaq Fjord, West Greenland, are positively correlated (r2 = 0.88, n = 5, p < 0.05; r2 = 0.93, n = 5, p < 0.05) with ablation onset and cessation at the Kangerlussuaq Transect automatic weather station S5 (490 ma.s.l., 6 km from the ice margin). Plume length is positively correlated (r2 = 0.52, n = 35, p < 0.05) with observed 4 day mean Watson River discharge throughout the 2007 and 2008 melt seasons. Plume length is used to infer instantaneous and annual cumulative Watson River discharge between 2001 and 2008. Reconstructed cumulative discharge values overestimate observed cumulative discharge values for 2007 and 2008 by 15% and 29%, respectively.


2007 ◽  
Vol 46 ◽  
pp. 35-42 ◽  
Author(s):  
Robert S. Fausto ◽  
Christoph Mayer ◽  
Andreas P. Ahlstrøm

AbstractA new surface classification algorithm for monitoring snow and ice masses based on data from the moderate-resolution imaging spectroradiometer (MODIS) is presented. The algorithm is applied to the Greenland ice sheet for the period 2000–05 and exploits the spectral variability of ice and snow reflectance to determine the surface classes dry snow, wet snow and glacier ice. The result is a monthly glacier surface type (GST) product on a 1 km resolution grid. The GST product is based on a grouped criteria technique with spectral thresholds and normalized indices for the classification on a pixel-by-pixel basis. The GST shows the changing surface classes, revealing the impact of climate variations on the Greenland ice sheet over time. The area of wet snow and glacier ice is combined into the glacier melt area (GMA) product. The GMA is analyzed in relation to the different surface classes in the GST product. The results are validated with data from weather stations and similar types of satellite-derived products. The validation shows that the automated algorithm successfully distinguishes between the different surface types, implying that the product is a promising indicator of climate change impact on the Greenland ice sheet.


2002 ◽  
Vol 34 ◽  
pp. 141-149 ◽  
Author(s):  
F. G. L. Cawkwell ◽  
J. L. Bamber

AbstractEnergy-balancemodels driven by radiation and turbulent heat fluxes have been widely applied to predicting the response of the Greenland ice sheet to climate change. However, a lack of knowledge of the temporal and spatial distribution of cloud amount and type has necessitated the use of parameterizations or statistical models of cloud cover. This deficiency results in large uncertainties in both shortwave and longwave radiation fluxes. Stereo-matching of nadir and forward view AlongTrack Scanning Radiometer-2 (ATSR-2) image pairs has been shown to be a reliable method of retrieving cloud top height, and further cloud properties can be derived from thermal imagery allowing classification into cloud type. A 1 year cloud record for a transect across southern Greenland derived from stereo-matching is presented here, and comparisons are made with climate re-analysis data and ground observations. The cloud-cover data were used in a simple radiative transfer model, and the impact of clouds on the net radiation fluxes was found to be considerable. Different cloud scenarios produced up to 40 Wm–2 difference in net radiation balance. In the ablation zone, where the albedo is lower and most variable, the sensitivity to cloud-cover fraction was less marked, but the higher spatial resolution of the ATSR-2 cloud record was reflected by a much more varied trend in radiation balance. Whether the net radiation balance increases or decreases with increased cloud cover was found to be a function of the cloud amount and type and also the surface albedo. The sensitivity of the model to a ±5% change in cloud amount was found to be comparable to a 1 K change in temperature. This clearly demonstrates the importance of reliable, quantitative cloud data in mass-balance and other glaciological studies.


2012 ◽  
Vol 58 (210) ◽  
pp. 699-712 ◽  
Author(s):  
Andrew J. Tedstone ◽  
Neil S. Arnold

AbstractThe viability of employing sediment plumes emanating from outlets along the western margin of the Greenland ice sheet as indicators of runoff is assessed. An automated sediment plume quantification system based on daily 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) band 1 reflectance imagery is developed. Coherent plumes are identified using spectral thresholds and polygon tracing. Validation employs imagery quality-control procedures and manual verification of plume areas. Outlets at land-terminating margins with wide and straight fjord geometries deliver the most accurate and consistent results. Plume area observations are also possible at marine-terminating margins with relatively static fronts and low proximal sea-ice concentrations. Variability in plume area is examined with reference to Special Satellite Microwave Imager (SSM/I)-derived daily melt extent at the hydrologic catchment scale. At annual timescales, plume areas tend to co-vary with surface melt extent, indicating that more mass is lost by runoff during years of extensive melting. Some synchronicity in plume areas from different catchments is apparent. At seasonal and daily timescales, plumes from individual outlets primarily relate to catchment-specific melting.


1990 ◽  
Vol 36 (123) ◽  
pp. 217-221 ◽  
Author(s):  
Roger J. Braithwaite ◽  
Ole B. Olesen

AbstractDaily ice ablation on two outlet glaciers from the Greenland ice sheet, Nordbogletscher (1979–83) and Qamanârssûp sermia (1980–86), is related to air temperature by a linear regression equation. Analysis of this ablation-temperature equation with the help of a simple energy-balance model shows that sensible-heat flux has the greatest temperature response and accounts for about one-half of the temperature response of ablation. Net radiation accounts for about one-quarter of the temperature response of ablation, and latent-heat flux and errors account for the remainder. The temperature response of sensible-heat flux at QQamanârssûp sermia is greater than at Nordbogletscher mainly due to higher average wind speeds. The association of high winds with high temperatures during Föhn events further increases sensible-heat flux. The energy-balance model shows that ablation from a snow surface is only about half that from an ice surface at the same air temperature.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hirofumi Hashimoto ◽  
Weile Wang ◽  
Jennifer L. Dungan ◽  
Shuang Li ◽  
Andrew R. Michaelis ◽  
...  

AbstractAssessing the seasonal patterns of the Amazon rainforests has been difficult because of the paucity of ground observations and persistent cloud cover over these forests obscuring optical remote sensing observations. Here, we use data from a new generation of geostationary satellites that carry the Advanced Baseline Imager (ABI) to study the Amazon canopy. ABI is similar to the widely used polar orbiting sensor, the Moderate Resolution Imaging Spectroradiometer (MODIS), but provides observations every 10–15 min. Our analysis of NDVI data collected over the Amazon during 2018–19 shows that ABI provides 21–35 times more cloud-free observations in a month than MODIS. The analyses show statistically significant changes in seasonality over 85% of Amazon forest pixels, an area about three times greater than previously reported using MODIS data. Though additional work is needed in converting the observed changes in seasonality into meaningful changes in canopy dynamics, our results highlight the potential of the new generation geostationary satellites to help us better understand tropical ecosystems, which has been a challenge with only polar orbiting satellites.


2017 ◽  
Vol 3 (6) ◽  
pp. e1700584 ◽  
Author(s):  
Stefan Hofer ◽  
Andrew J. Tedstone ◽  
Xavier Fettweis ◽  
Jonathan L. Bamber

2016 ◽  
Vol 29 (17) ◽  
pp. 6065-6083 ◽  
Author(s):  
Yinghui Liu ◽  
Jeffrey R. Key

Abstract Cloud cover is one of the largest uncertainties in model predictions of the future Arctic climate. Previous studies have shown that cloud amounts in global climate models and atmospheric reanalyses vary widely and may have large biases. However, many climate studies are based on anomalies rather than absolute values, for which biases are less important. This study examines the performance of five atmospheric reanalysis products—ERA-Interim, MERRA, MERRA-2, NCEP R1, and NCEP R2—in depicting monthly mean Arctic cloud amount anomalies against Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations from 2000 to 2014 and against Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) observations from 2006 to 2014. All five reanalysis products exhibit biases in the mean cloud amount, especially in winter. The Gerrity skill score (GSS) and correlation analysis are used to quantify their performance in terms of interannual variations. Results show that ERA-Interim, MERRA, MERRA-2, and NCEP R2 perform similarly, with annual mean GSSs of 0.36/0.22, 0.31/0.24, 0.32/0.23, and 0.32/0.23 and annual mean correlation coefficients of 0.50/0.51, 0.43/0.54, 0.44/0.53, and 0.50/0.52 against MODIS/CALIPSO, indicating that the reanalysis datasets do exhibit some capability for depicting the monthly mean cloud amount anomalies. There are no significant differences in the overall performance of reanalysis products. They all perform best in July, August, and September and worst in November, December, and January. All reanalysis datasets have better performance over land than over ocean. This study identifies the magnitudes of errors in Arctic mean cloud amounts and anomalies and provides a useful tool for evaluating future improvements in the cloud schemes of reanalysis products.


2011 ◽  
Vol 28 (5) ◽  
pp. 1030-1038 ◽  
Author(s):  
Linling Chen ◽  
Ola M. Johannessen ◽  
Huijun Wang ◽  
Atsumu Ohmura

Sign in / Sign up

Export Citation Format

Share Document