On the Mechanisms of Episodic Salinity Outflow Events in the Strait of Hormuz

2009 ◽  
Vol 39 (6) ◽  
pp. 1340-1360 ◽  
Author(s):  
Prasad G. Thoppil ◽  
Patrick J. Hogan

Abstract Observations in the Strait of Hormuz (26.26°N, 56.08°E) during 1997–98 showed substantial velocity fluctuations, accompanied by episodic changes in the salinity outflow events with amplitude varying between 1 and 2 psu on time scales of several days to a few weeks. These events are characterized by a rapid increase in salinity followed by an abrupt decline. The mechanisms behind these strong pulses of salinity events are investigated with a high-resolution (∼1 km) Hybrid Coordinate Ocean Model (HYCOM) with particular reference to the year 2005. In accordance with the observations, the simulated salinity events are characterized by strong coherence between the enhanced flows in zonal and meridional directions. It is inferred that most of the simulated and observed outflow variability is associated with the continuous formation of strong mesoscale cyclonic eddies, whose origin can be traced upstream to around 26°N, 55.5°E. These cyclonic eddies have a diameter of about 63 km and have a remnant of Persian Gulf water (PGW) in their cores, which is eroded by lateral mixing as the eddies propagate downstream at a translation speed of 4.1 cm s−1. The primary process that acts to generate mesoscale cyclones results from the barotropic instability of the exchange circulation through the Strait of Hormuz induced by fluctuations in the wind stress forcing. The lack of salinity events and cyclogenesis in a model experiment with no wind stress forcing further confirms the essential ingredients required for the development of strong cyclones and the associated outflow variability.

Oceans ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 105-125
Author(s):  
Adam Ayouche ◽  
Charly De Marez ◽  
Mathieu Morvan ◽  
Pierre L’Hegaret ◽  
Xavier Carton ◽  
...  

The Ras al Hadd oceanic dipole is a recurrent association of a cyclone (to the northeast) and of an anticyclone (to the southwest), which forms in summer and breaks up at the end of autumn. It lies near the Ras al Hadd cape, southeast of the Arabian peninsula. Its size is on the order of 100 km. Along the axis of this dipole flows an intense jet, the Ras al Had jet. Using altimetric data and an eddy detection and tracking algorithm (AMEDA: Angular Momentum Eddy Detection and tracking Algorithm), we describe the life cycle of this oceanic dipole over a year (2014–2015). We also use the results of a numerical model (HYCOM, the HYbrid Coordinate Ocean Model) simulation, and hydrological data from ARGO profilers, to characterize the vertical structure of the two eddies composing the dipole, and their variability over a 15 year period. We show that (1) before the dipole is formed, the two eddies that will compose it, come from different locations to join near Ras al Hadd, (2) the dipole remains near Ras al Hadd during summer and fall while the wind stress (due to the summer monsoon wind) intensifies the cyclone, (3) both the anticyclone and the cyclone reach the depth of the Persian Gulf Water outflow, and (4) their horizontal radial velocity profile is often close to Gaussian but it can vary as the dipole interacts with neighboring eddies. As a conclusion, further work with a process model is recommended to quantify the interaction of this dipole with surrounding eddies and with the atmosphere.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chaoyu Yang ◽  
Haibin Ye

AbstractA coastal front was detected in the eastern Guangdong (EGD) coastal waters during a downwelling-favorable wind period by using the diffuse attenuation coefficient at 490 nm (Kd(490)). Long-term satellite data, meteorological data and hydrographic data collected from 2003 to 2017 were jointly utilized to analyze the environmental factors affecting coastal fronts. The intensities of the coastal fronts were found to be associated with the downwelling intensity. The monthly mean Kd(490) anomalies in shallow coastal waters less than 25 m deep along the EGD coast and the monthly mean Ekman pumping velocities retrieved by the ERA5 dataset were negatively correlated, with a Pearson correlation of − 0.71. The fronts started in October, became weaker and gradually disappeared after January, extending southwestward from the southeastern coast of Guangdong Province to the Wanshan Archipelago in the South China Sea (SCS). The cross-frontal differences in the mean Kd(490) values could reach 3.7 m−1. Noticeable peaks were found in the meridional distribution of the mean Kd(490) values at 22.5°N and 22.2°N and in the zonal distribution of the mean Kd(490) values at 114.7°E and 114.4°E. The peaks tended to narrow as the latitude increased. The average coastal surface currents obtained from the global Hybrid Coordinate Ocean Model (HYCOM) showed that waters with high nutrient and sediment contents in the Fujian and Zhejiang coastal areas in the southern part of the East China Sea could flow into the SCS. The directions and lengths of the fronts were found to be associated with the flow advection.


2013 ◽  
Vol 30 (3) ◽  
pp. 590-608 ◽  
Author(s):  
Shiqiu Peng ◽  
Yineng Li ◽  
Lian Xie

Abstract A three-dimensional ocean model and its adjoint model are used to adjust the drag coefficient in the calculation of wind stress for storm surge forecasting. A number of identical twin experiments (ITEs) with different error sources imposed are designed and performed. The results indicate that when the errors come from the wind speed, the drag coefficient is adjusted to an “optimal value” to compensate for the wind errors, resulting in significant improvements of the specific storm surge forecasting. In practice, the “true” drag coefficient is unknown and the wind field, which is usually calculated by an empirical parameter model or a numerical weather prediction model, may contain large errors. In addition, forecasting errors may also come from imperfect model physics and numerics, such as insufficient resolution and inaccurate physical parameterizations. The results demonstrate that storm surge forecasting errors can be reduced through data assimilation by adjusting the drag coefficient regardless of the error sources. Therefore, although data assimilation may not fix model imperfection, it is effective in improving storm surge forecasting by adjusting the wind stress drag coefficient using the adjoint technique.


Ocean Science ◽  
2016 ◽  
Vol 12 (3) ◽  
pp. 687-701 ◽  
Author(s):  
Pierre L'Hégaret ◽  
Xavier Carton ◽  
Stephanie Louazel ◽  
Guillaume Boutin

Abstract. The Persian Gulf produces high-salinity water (Persian Gulf Water, PGW hereafter), which flows into the Sea of Oman via the Strait of Hormuz. Beyond the Strait of Hormuz, the PGW cascades down the continental slope and spreads in the Sea of Oman under the influence of the energetic mesoscale eddies. The PGW outflow has different thermohaline characteristics and pathways, depending on the season. In spring 2011, the Phys-Indien experiment was carried out in the Arabian Sea and in the Sea of Oman. The Phys-Indien 2011 measurements, as well as satellite observations, are used here to characterize the circulation induced by the eddy field and its impact on the PGW pathway and evolution. During the spring intermonsoon, an anticyclonic eddy is often observed at the mouth of the Sea of Oman. It creates a front between the eastern and western parts of the basin. This structure was observed in 2011 during the Phys-Indien experiment. Two energetic eddies were also present along the southern Omani coast in the Arabian Sea. At their peripheries, ribbons of freshwater and cold water were found due to the stirring created by the eddies. The PGW characteristics are strongly influenced by these eddies. In the western Sea of Oman, in 2011, the PGW was fragmented into filaments and submesoscale eddies. It also recirculated locally, thus creating salty layers with different densities. In the Arabian Sea, a highly saline submesoscale lens was recorded offshore. Its characteristics are analyzed here and possible origins are proposed. The recurrence of such lenses in the Arabian Sea is also briefly examined.


2005 ◽  
Vol 35 (1) ◽  
pp. 13-32 ◽  
Author(s):  
A. Birol Kara ◽  
Alan J. Wallcraft ◽  
Harley E. Hurlburt

Abstract A 1/25° × 1/25° cos(lat) (longitude × latitude) (≈3.2-km resolution) eddy-resolving Hybrid Coordinate Ocean Model (HYCOM) is introduced for the Black Sea and used to examine the effects of ocean turbidity on upper-ocean circulation features including sea surface height and mixed layer depth (MLD) on annual mean climatological time scales. The model is a primitive equation model with a K-profile parameterization (KPP) mixed layer submodel. It uses a hybrid vertical coordinate that combines the advantages of isopycnal, σ, and z-level coordinates in optimally simulating coastal and open-ocean circulation features. This model approach is applied to the Black Sea for the first time. HYCOM uses a newly developed time-varying solar penetration scheme that treats attenuation as a continuous quantity. This scheme includes two bands of solar radiation penetration, one that is needed in the top 10 m of the water column and another that penetrates to greater depths depending on the turbidity. Thus, it is suitable for any ocean general circulation model that has fine vertical resolution near the surface. With this scheme, the optical depth–dependent attenuation of subsurface heating in HYCOM is given by monthly mean fields for the attenuation of photosynthetically active radiation (kPAR) during 1997–2001. These satellite-based climatological kPAR fields are derived from Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) data for the spectral diffuse attenuation coefficient at 490 nm (k490) and have been processed to have the smoothly varying and continuous coverage necessary for use in the Black Sea model applications. HYCOM simulations are driven by two sets of high-frequency climatological forcing, but no assimilation of ocean data is then used to demonstrate the importance of including spatial and temporal varying attenuation depths for the annual mean prediction of upper-ocean quantities in the Black Sea, which is very turbid (kPAR > 0.15 m−1, in general). Results are reported from three model simulations driven by each atmospheric forcing set using different values for the kPAR. A constant solar-attenuation optical depth of ≈17 m (clear water assumption), as opposed to using spatially and temporally varying attenuation depths, changes the surface circulation, especially in the eastern Black Sea. Unrealistic sub–mixed layer heating in the former results in weaker stratification at the base of the mixed layer and a deeper MLD than observed. As a result, the deep MLD off Sinop (at around 42.5°N, 35.5°E) weakens the surface currents regardless of the atmospheric forcing used in the model simulations. Using the SeaWiFS-based monthly turbidity climatology gives a shallower MLD with much stronger stratification at the base and much better agreement with observations. Because of the high Black Sea turbidity, the simulation with all solar radiation absorbed at the surface case gives results similar to the simulations using turbidity from SeaWiFS in the annual means, the aspect of the results investigated in this paper.


2019 ◽  
Vol 36 (8) ◽  
pp. 1547-1561
Author(s):  
Elizabeth M. Douglass ◽  
Andrea C. Mask

AbstractAs numerical modeling advances, quantitative metrics are necessary to determine whether the model output accurately represents the observed ocean. Here, a metric is developed based on whether a model places oceanic fronts in the proper location. Fronts are observed and assessed directly from along-track satellite altimetry. Numerical model output is then interpolated to the locations of the along-track data, and fronts are detected in the model output. Scores are determined from the percentage of observed fronts correctly simulated in the model and from the percentage of modeled fronts confirmed by observations. These scores depend on certain parameters such as the minimum size of a front, which will be shown to be geographically dependent. An analysis of two models, the Hybrid Coordinate Ocean Model (HYCOM) and the Navy Coastal Ocean Model (NCOM), is presented as an example of how this metric might be applied and interpreted. In this example, scores are found to be relatively stable in time, but strongly dependent on the mesoscale variability in the region of interest. In all cases, the metric indicates that there are more observed fronts not found in the models than there are modeled fronts missing from observations. In addition to the score itself, the analysis demonstrates that modeled fronts have smaller amplitude and are less steep than observed fronts.


2022 ◽  
pp. 1-31

Abstract Projections of relative sea-level change (RSLC) are commonly reported at an annual mean basis. The seasonality of RSLC is often not considered, even though it may modulate the impacts of annual mean RSLC. Here, we study seasonal differences in 21st-century ocean dynamic sea-level change (DSLC, 2081-2100 minus 1995-2014) on the Northwestern European Shelf (NWES) and their drivers, using an ensemble of 33 CMIP6 models complemented with experiments performed with a regional ocean model. For the high-end emissions scenario SSP5-8.5, we find substantial seasonal differences in ensemble mean DSLC, especially in the southeastern North Sea. For example, at Esbjerg (Denmark), winter mean DSLC is on average 8.4 cm higher than summer mean DSLC. Along all coasts on the NWES, DSLC is higher in winter and spring than in summer and autumn. For the low-end emissions scenario SSP1-2.6, these seasonal differences are smaller. Our experiments indicate that the changes in winter and summer sea-level anomalies are mainly driven by regional changes in wind-stress anomalies, which are generally southwesterly and east-northeasterly over the NWES, respectively. In spring and autumn, regional wind-stress changes play a smaller role. We also show that CMIP6 models not resolving currents through the English Channel cannot accurately simulate the effect of seasonal wind-stress changes on he NWES. Our results imply that using projections of annual mean RSLC may underestimate the projected changes in extreme coastal sea levels in spring and winter. Additionally, changes in the seasonal sea-level cycle may affect groundwater dynamics and the inundation characteristics of intertidal ecosystems.


Sign in / Sign up

Export Citation Format

Share Document