scholarly journals Using Surface Pressure Variations to Categorize Diurnal Valley Circulations: Experiments in Owens Valley

2009 ◽  
Vol 137 (6) ◽  
pp. 1753-1769 ◽  
Author(s):  
Yanping Li ◽  
Ronald B. Smith ◽  
Vanda Grubišić

Abstract Harmonic analysis has been applied to data from nearly 1000 Automatic Surface Observation System (ASOS) stations over the United States to extract diurnal pressure signals. The largest diurnal pressure amplitudes (∼200 Pa) and the earliest phases (∼0600 LST for surface pressure maximum) were found for stations located within deep mountain valleys in the western United States. The origin of these unique characteristics of valley pressure signals is examined with a detailed study of Owens Valley, California. Analysis of observational data from the Terrain-Induced Rotor Experiment (T-REX) project shows that the ratio of the valley surface pressure to temperature amplitude can be used to estimate the daily maximum mixed-layer depth H. On days with strong westerly winds above the valley, the mixed layer is found to be shallower than on quiescent days because of a flushing effect in the upper parts of the valley. Idealized two-dimensional Weather Research and Forecasting Model simulations were used to explain the pressure signal. In agreement with observations, the simulations show a 3-h difference between the occurrence of a surface pressure minimum (1800 LST) and a surface temperature maximum (1500 LST). The resolved energy budget analysis reveals that this time lag is caused by the persistence of subsidence warming in the upper part of the valley after the surface begins to cool. Sensitivity tests for different valley depths and seasons show that the relative height of the mixed-layer depth with respect to the valley depth, along with the valley width-to-depth ratio, determine whether the diurnal valley circulation is a “confined” system or an “open” system. The open system has a smaller pressure amplitude and an earlier pressure phase.

2012 ◽  
Vol 40 (3-4) ◽  
pp. 743-759 ◽  
Author(s):  
M. G. Keerthi ◽  
M. Lengaigne ◽  
J. Vialard ◽  
C. de Boyer Montégut ◽  
P. M. Muraleedharan

Nature ◽  
2021 ◽  
Vol 591 (7851) ◽  
pp. 592-598
Author(s):  
Jean-Baptiste Sallée ◽  
Violaine Pellichero ◽  
Camille Akhoudas ◽  
Etienne Pauthenet ◽  
Lucie Vignes ◽  
...  

2015 ◽  
Vol 11 (1) ◽  
pp. 45-61 ◽  
Author(s):  
P. A. Araya-Melo ◽  
M. Crucifix ◽  
N. Bounceur

Abstract. The sensitivity of the Indian monsoon to the full spectrum of climatic conditions experienced during the Pleistocene is estimated using the climate model HadCM3. The methodology follows a global sensitivity analysis based on the emulator approach of Oakley and O'Hagan (2004) implemented following a three-step strategy: (1) development of an experiment plan, designed to efficiently sample a five-dimensional input space spanning Pleistocene astronomical configurations (three parameters), CO2 concentration and a Northern Hemisphere glaciation index; (2) development, calibration and validation of an emulator of HadCM3 in order to estimate the response of the Indian monsoon over the full input space spanned by the experiment design; and (3) estimation and interpreting of sensitivity diagnostics, including sensitivity measures, in order to synthesise the relative importance of input factors on monsoon dynamics, estimate the phase of the monsoon intensity response with respect to that of insolation, and detect potential non-linear phenomena. By focusing on surface temperature, precipitation, mixed-layer depth and sea-surface temperature over the monsoon region during the summer season (June-July-August-September), we show that precession controls the response of four variables: continental temperature in phase with June to July insolation, high glaciation favouring a late-phase response, sea-surface temperature in phase with May insolation, continental precipitation in phase with July insolation, and mixed-layer depth in antiphase with the latter. CO2 variations control temperature variance with an amplitude similar to that of precession. The effect of glaciation is dominated by the albedo forcing, and its effect on precipitation competes with that of precession. Obliquity is a secondary effect, negligible on most variables except sea-surface temperature. It is also shown that orography forcing reduces the glacial cooling, and even has a positive effect on precipitation. As regards the general methodology, it is shown that the emulator provides a powerful approach, not only to express model sensitivity but also to estimate internal variability and detect anomalous simulations.


Ocean Science ◽  
2015 ◽  
Vol 11 (1) ◽  
pp. 83-91 ◽  
Author(s):  
L. Biermann ◽  
C. Guinet ◽  
M. Bester ◽  
A. Brierley ◽  
L. Boehme

Abstract. Under high light intensity, phytoplankton protect their photosystems from bleaching through non-photochemical quenching processes. The consequence of this is suppression of fluorescence emission, which must be corrected when measuring in situ yield with fluorometers. We present data from the Southern Ocean, collected over five austral summers by 19 southern elephant seals tagged with fluorometers. Conventionally, fluorescence data collected during the day (quenched) were corrected using the limit of the mixed layer, assuming that phytoplankton are uniformly mixed from the surface to this depth. However, distinct deep fluorescence maxima were measured in approximately 30% of the night (unquenched) data. To account for the evidence that chlorophyll is not uniformly mixed in the upper layer, we propose correcting from the limit of the euphotic zone, defined as the depth at which photosynthetically available radiation is ~ 1% of the surface value. Mixed layer depth exceeded euphotic depth over 80% of the time. Under these conditions, quenching was corrected from the depth of the remotely derived euphotic zone Zeu, and compared with fluorescence corrected from the depth of the density-derived mixed layer. Deep fluorescence maxima were evident in only 10% of the day data when correcting from mixed layer depth. This was doubled to 21% when correcting from Zeu, more closely matching the unquenched (night) data. Furthermore, correcting from Zeu served to conserve non-uniform chlorophyll features found between the 1% light level and mixed layer depth.


2016 ◽  
Author(s):  
A. Bigdeli ◽  
B. Loose ◽  
S. T. Cole

Abstract. In ice-covered regions it can be challenging to determine air-sea exchange – for heat and momentum, but also for gases like carbon dioxide and methane. The harsh environment and relative data scarcity make it difficult to characterize even the physical properties of the ocean surface. Here, we seek a mechanistic interpretation for the rate of air-sea gas exchange (k) derived from radon-deficits. These require an estimate of the water column history extending 30 days prior to sampling. We used coarse resolution (36 km) regional configuration of the MITgcm with fine near surface vertical spacing (2 m) to evaluate the capability of the model to reproduce conditions prior to sampling. The model is used to estimate sea-ice velocity, concentration and mixed-layer depth experienced by the water column. We then compared the model results to existing field data including satellite, moorings and Ice-tethered profilers. We found that model-derived sea-ice coverage is 88 to 98 % accurate averaged over Beaufort Gyre, sea-ice velocities have 78 % correlation which resulted in 2 km/day error in 30 day trajectory of sea-ice. The model demonstrated the capacity to capture the broad trends in the mixed layer although with a bias and model water velocities showed only 29 % correlation with actual data. Overall, we find the course resolution model to be an inadequate surrogate for sparse data, however the simulation results are a slight improvement over several of the simplifying assumptions that are often made when surface ocean geochemistry, including the use of a constant mixed layer depth and a velocity profile that is purely wind-driven.


Sign in / Sign up

Export Citation Format

Share Document