scholarly journals Biophysical Evaluation of Land-Cover Products for Land–Climate Modeling

2009 ◽  
Vol 13 (6) ◽  
pp. 1-16 ◽  
Author(s):  
Jianjun Ge ◽  
Nathan Torbick ◽  
Jiaguo Qi

Abstract The need for accurate characterization of the land surface as boundary conditions in climate models has been recognized widely in the climate modeling community. A large number of land-cover datasets are currently used in climate models either to better represent surface conditions or to study the impacts of surface changes. Deciding upon land-cover datasets can be challenging because the datasets are made with different sensors, ranging methodologies, and varying classification objectives. A new statistical measure Q was developed to evaluate land-cover datasets in land–climate interaction research. This measure calculates biophysical precision of land-cover datasets using 1-km monthly Moderate Resolution Imaging Spectroradiometer (MODIS) leaf area index (LAI) product. This method aggregates within-class biophysical consistency, calculated as LAI variation, across a study domain and over multiple years into a single statistic. A smaller mean Q value for a land-cover product indicates more precise biophysical characterization within the classes. As an illustration, four land-cover products were assessed in the East Africa region: Global Land Cover 2000 (GLC2000), MODIS land cover, Olson Global Ecosystems (OGE), and Land Ecosystem–Atmosphere Feedback (LEAF) model. The evaluation was conducted at three different spatial scales corresponding to 30 × 30, 50 × 50, and 100 × 100 km quadrates. The Q measure found that GLC2000 ranked higher compared to the other three land-cover products for every quadrate size. For the 30 × 30 km quadrate size GLC2000 was significantly better than LEAF, which is currently used in the Regional Atmospheric Modeling System. The statistic ranks MODIS land cover above OGE, which is above LEAF. As quadrate size increases, differences between Q decrease indicating greater uncertainty at coarser resolution. The utility of the measure is that it can be applied to any continuous parameter over any scale (space or time) to evaluate the biophysical precision of any land-cover dataset.

2003 ◽  
Vol 16 (9) ◽  
pp. 1261-1282 ◽  
Author(s):  
Valéry Masson ◽  
Jean-Louis Champeaux ◽  
Fabrice Chauvin ◽  
Christelle Meriguet ◽  
Roselyne Lacaze

Abstract Ecoclimap, a new complete surface parameter global dataset at a 1-km resolution, is presented. It is intended to be used to initialize the soil–vegetation–atmosphere transfer schemes (SVATs) in meteorological and climate models (at all horizontal scales). The database supports the “tile” approach, which is utilized by an increasing number of SVATs. Two hundred and fifteen ecosystems representing areas of homogeneous vegetation are derived by combining existing land cover maps and climate maps, in addition to using Advanced Very High Resolution Radiometer (AVHRR) satellite data. Then, all surface parameters are derived for each of these ecosystems using lookup tables with the annual cycle of the leaf area index (LAI) being constrained by the AVHRR information. The resulting LAI is validated against a large amount of in situ ground observations, and it is also compared to LAI derived from the International Satellite Land Surface Climatology Project (ISLSCP-2) database and the Polarization and Directionality of the Earth's Reflectance (POLDER) satellite. The comparison shows that this new LAI both reproduces values coherent at large scales with other datasets, and includes the high spatial variations owing to the input land cover data at a 1-km resolution. In terms of climate modeling studies, the use of this new database is shown to improve the surface climatology of the ARPEGE climate model.


2013 ◽  
Vol 6 (2) ◽  
pp. 563-582 ◽  
Author(s):  
S. Faroux ◽  
A. T. Kaptué Tchuenté ◽  
J.-L. Roujean ◽  
V. Masson ◽  
E. Martin ◽  
...  

Abstract. The overall objective of the present study is to introduce the new ECOCLIMAP-II database for Europe, which is an upgrade for this region of the former initiative, ECOCLIMAP-I, already implemented at global scale. The ECOCLIMAP programme is a dual database at 1 km resolution that includes an ecosystem classification and a coherent set of land surface parameters that are primarily mandatory in meteorological modelling (notably leaf area index and albedo). Hence, the aim of this innovative physiography is to enhance the quality of initialisation and impose some surface attributes within the scope of weather forecasting and climate related studies. The strategy for implementing ECOCLIMAP-II is to depart from prevalent land cover products such as CLC2000 (Corine Land Cover) and GLC2000 (Global Land Cover) by splitting existing classes into new classes that possess a better regional character by virtue of the climatic environment (latitude, proximity to the sea, topography). The leaf area index (LAI) from MODIS and normalized difference vegetation index (NDVI) from SPOT/Vegetation (a global monitoring system of vegetation) yield the two proxy variables that were considered here in order to perform a multi-year trimmed analysis between 1999 and 2005 using the K-means method. Further, meteorological applications require each land cover type to appear as a partition of fractions of 4 main surface types or tiles (nature, water bodies, sea, urban areas) and, inside the nature tile, fractions of 12 plant functional types (PFTs) representing generic vegetation types – principally broadleaf forest, needleleaf forest, C3 and C4 crops, grassland and bare land – as incorporated by the SVAT model ISBA (Interactions Surface Biosphere Atmosphere) developed at Météo France. This landscape division also forms the cornerstone of a validation exercise. The new ECOCLIMAP-II can be verified with auxiliary land cover products at very fine and coarse resolutions by means of versatile land occupation nomenclatures.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Lahouari Bounoua ◽  
Ping Zhang ◽  
Kurtis Thome ◽  
Jeffrey Masek ◽  
Abdelmounaime Safia ◽  
...  

In terms of the space cities occupy, urbanization appears as a minor land transformation. However, it permanently modifies land’s ecological functions, altering its carbon, energy, and water fluxes. It is therefore necessary to develop a land cover characterization at fine spatial and temporal scales to capture urbanization’s effects on surface fluxes. We develop a series of biophysical vegetation parameters such as the fraction of photosynthetically active radiation, leaf area index, vegetation greenness fraction, and roughness length over the continental US using MODIS and Landsat products for 2001. A 13-class land cover map was developed at a climate modeling grid (CMG) merging the 500 m MODIS land cover and the 30 m impervious surface area from the National Land Cover Database. The landscape subgrid heterogeneity was preserved using fractions of each class from the 500 m and 30 m into the CMG. Biophysical parameters were computed using the 8-day composite Normalized Difference Vegetation Index produced by the North American Carbon Program. In addition to urban impact assessments, this dataset is useful for the computation of surface fluxes in land, vegetation, and urban models and is expected to be widely used in different land cover and land use change applications.


2012 ◽  
Vol 5 (4) ◽  
pp. 3573-3620 ◽  
Author(s):  
S. Faroux ◽  
A. T. Kaptué Tchuenté ◽  
J.-L. Roujean ◽  
V. Masson ◽  
E. Martin ◽  
...  

Abstract. The overall objective of the present study is to introduce the new ECOCLIMAP-II database for Europe, which is an upgrade for this region of the former initiative, ECOCLIMAP-I, already implemented at global scale. The ECOCLIMAP programme is a dual database at 1-km resolution that includes an ecosystem classification and a coherent set of land surface parameters that are primarily mandatory in meteorological modelling (notably leaf area index and albedo). Hence, the aim of this innovative physiography is to enhance the quality of initialisation and impose some surface attributes within the scope of weather forecasting and climate related studies. The strategy for implementing ECOCLIMAP-II is to depart from prevalent land cover products such as CLC2000 (Corine Land Cover) and GLC2000 (Global Land Cover) by splitting existing classes into new classes that possess a better regional character by virtue of the climatic environment (latitude, proximity to the sea, topography). The leaf area index (LAI) from MODIS and NDVI from SPOT/Vegetation yield the two proxy variables that were considered here in order to perform a multi-year trimmed analysis between 1999 and 2005 using the K-means method. Further, meteorological applications require each land cover type to appear as a partition of fractions of 4 main surface types or tiles (nature, water bodies, sea, urban areas) and, inside the nature tile, fractions of 12 Plant Functional Types (PFTs) representing generic vegetation types – principally broadleaf forest, needleleaf forest, C3 and C4 crops, grassland and bare land – as incorporated by the SVAT model ISBA developed at Météo France. This landscape division also forms the cornerstone of a validation exercise. The new ECOCLIMAP-II can be verified with auxiliary land cover products at very fine and coarse resolutions by means of versatile land occupation nomenclatures.


2013 ◽  
Vol 10 (3) ◽  
pp. 1501-1516 ◽  
Author(s):  
J. P. Boisier ◽  
N. de Noblet-Ducoudré ◽  
P. Ciais

Abstract. Regional cooling resulting from increases in surface albedo has been identified in several studies as the main biogeophysical effect of past land use-induced land cover changes (LCC) on climate. However, the amplitude of this effect remains quite uncertain due to, among other factors, (a) uncertainties in the extent of historical LCC and, (b) differences in the way various models simulate surface albedo and more specifically its dependency on vegetation type and snow cover. We derived monthly albedo climatologies for croplands and four other land cover types from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations. We then reconstructed the changes in surface albedo between preindustrial times and present-day by combining these climatologies with the land cover maps of 1870 and 1992 used by seven land surface models (LSMs) in the context of the LUCID ("Land Use and Climate: identification of robust Impacts") intercomparison project. These reconstructions show surface albedo increases larger than 10% (absolute) in winter, and larger than 2% in summer between 1870 and 1992 over areas that experienced intense deforestation in the northern temperate regions. The historical surface albedo changes estimated with MODIS data were then compared to those simulated by the various climate models participating in LUCID. The inter-model mean albedo response to LCC shows a similar spatial and seasonal pattern to the one resulting from the MODIS-based reconstructions, that is, larger albedo increases in winter than in summer, driven by the presence of snow. However, individual models show significant differences between the simulated albedo changes and the corresponding reconstructions, despite the fact that land cover change maps are the same. Our analyses suggest that the primary reason for those discrepancies is how LSMs parameterize albedo. Another reason, of secondary importance, results from differences in their simulated snow extent. Our methodology is a useful tool not only to infer observations-based historical changes in land surface variables impacted by LCC, but also to point out deficiencies of the models. We therefore suggest that it could be more widely developed and used in conjunction with other tools in order to evaluate LSMs.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1551
Author(s):  
Jiaqi Zhang ◽  
Xiangjin Shen ◽  
Yanji Wang ◽  
Ming Jiang ◽  
Xianguo Lu

The area and vegetation coverage of forests in Changbai Mountain of China have changed significantly during the past decades. Understanding the effects of forests and forest coverage change on regional climate is important for predicting climate change in Changbai Mountain. Based on the satellite-derived land surface temperature (LST), albedo, evapotranspiration, leaf area index, and land-use data, this study analyzed the influences of forests and forest coverage changes on summer LST in Changbai Mountain. Results showed that the area and vegetation coverage of forests increased in Changbai Mountain from 2003 to 2017. Compared with open land, forests could decrease the summer daytime LST (LSTD) and nighttime LST (LSTN) by 1.10 °C and 0.07 °C, respectively. The increase in forest coverage could decrease the summer LSTD and LSTN by 0.66 °C and 0.04 °C, respectively. The forests and increasing forest coverage had cooling effects on summer temperature, mainly by decreasing daytime temperature in Changbai Mountain. The daytime cooling effect is mainly related to the increased latent heat flux caused by increasing evapotranspiration. Our results suggest that the effects of forest coverage change on climate should be considered in climate models for accurately simulating regional climate change in Changbai Mountain of China.


2021 ◽  
Vol 14 (8) ◽  
pp. 4865-4890
Author(s):  
Peter Uhe ◽  
Daniel Mitchell ◽  
Paul D. Bates ◽  
Nans Addor ◽  
Jeff Neal ◽  
...  

Abstract. Riverine flood hazard is the consequence of meteorological drivers, primarily precipitation, hydrological processes and the interaction of floodwaters with the floodplain landscape. Modeling this can be particularly challenging because of the multiple steps and differing spatial scales involved in the varying processes. As the climate modeling community increases their focus on the risks associated with climate change, it is important to translate the meteorological drivers into relevant hazard estimates. This is especially important for the climate attribution and climate projection communities. Current climate change assessments of flood risk typically neglect key processes, and instead of explicitly modeling flood inundation, they commonly use precipitation or river flow as proxies for flood hazard. This is due to the complexity and uncertainties of model cascades and the computational cost of flood inundation modeling. Here, we lay out a clear methodology for taking meteorological drivers, e.g., from observations or climate models, through to high-resolution (∼90 m) river flooding (fluvial) hazards. Thus, this framework is designed to be an accessible, computationally efficient tool using freely available data to enable greater uptake of this type of modeling. The meteorological inputs (precipitation and air temperature) are transformed through a series of modeling steps to yield, in turn, surface runoff, river flow, and flood inundation. We explore uncertainties at different modeling steps. The flood inundation estimates can then be related to impacts felt at community and household levels to determine exposure and risks from flood events. The approach uses global data sets and thus can be applied anywhere in the world, but we use the Brahmaputra River in Bangladesh as a case study in order to demonstrate the necessary steps in our hazard framework. This framework is designed to be driven by meteorology from observational data sets or climate model output. In this study, only observations are used to drive the models, so climate changes are not assessed. However, by comparing current and future simulated climates, this framework can also be used to assess impacts of climate change.


2014 ◽  
Vol 27 (17) ◽  
pp. 6754-6778 ◽  
Author(s):  
Omar V. Müller ◽  
Ernesto Hugo Berbery ◽  
Domingo Alcaraz-Segura ◽  
Michael B. Ek

Abstract This work discusses the land surface–atmosphere interactions during the severe drought of 2008 in southern South America, which was among the most severe in the last 50 years in terms of both intensity and extent. Once precipitation returned to normal values, it took about two months for the soil moisture content and vegetation to recover. The land surface effects were examined by contrasting long-term simulations using a consistent set of satellite-derived annually varying land surface biophysical properties against simulations using the conventional land-cover types in the Weather Research and Forecasting Model–Noah land surface model (WRF–Noah). The new land-cover dataset is based on ecosystem functional properties that capture changes in vegetation status due to climate anomalies and land-use changes. The results show that the use of realistic information of vegetation states enhances the model performance, reducing the precipitation biases over the drought region and over areas of excessive precipitation. The precipitation bias reductions are attributed to the corresponding changes in greenness fraction, leaf area index, stomatal resistance, and surface roughness. The temperature simulation shows a generalized increase, which is attributable to a lower vegetation greenness and a doubling of the stomatal resistance that reduces the evapotranspiration rate. The increase of temperature has a beneficial effect toward the eastern part of the domain with a notable reduction of the bias, but not over the central region where the bias is increased. The overall results suggest that an improved representation of the surface processes may contribute to improving the predictive skill of the model system.


1994 ◽  
Vol 18 (1) ◽  
pp. 1-15 ◽  
Author(s):  
David Greenland

Common types of satellite-derived measurements are reviewed with respect to how they are used to provide information on variables important to land surface climatology. The variables considered include solar radiation, surface albedo, surface temperature, outgoing longwave radiation, cloud cover, net radiation, soil moisture, latent and sensible heat flux, surface cover and leaf area index. A selection of land surface climate modelling schemes is identified and considered with a view to their practicality for use with satellite-derived data. Issues arising from the foregoing considerations include the absence from satellite data of some variables required by land surface climate models, the importance of extreme pixel values in model parameterization, the importance of matching spatial resolution in satellite data and climate model, and the need to have concurrent, independently observed, meteorological data in order to make full use of the satellite data.


2018 ◽  
Vol 99 (6) ◽  
pp. 1253-1272 ◽  
Author(s):  
Joseph A. Santanello ◽  
Paul A. Dirmeyer ◽  
Craig R. Ferguson ◽  
Kirsten L. Findell ◽  
Ahmed B. Tawfik ◽  
...  

AbstractLand–atmosphere (L-A) interactions are a main driver of Earth’s surface water and energy budgets; as such, they modulate near-surface climate, including clouds and precipitation, and can influence the persistence of extremes such as drought. Despite their importance, the representation of L-A interactions in weather and climate models remains poorly constrained, as they involve a complex set of processes that are difficult to observe in nature. In addition, a complete understanding of L-A processes requires interdisciplinary expertise and approaches that transcend traditional research paradigms and communities. To address these issues, the international Global Energy and Water Exchanges project (GEWEX) Global Land–Atmosphere System Study (GLASS) panel has supported “L-A coupling” as one of its core themes for well over a decade. Under this initiative, several successful land surface and global climate modeling projects have identified hot spots of L-A coupling and helped quantify the role of land surface states in weather and climate predictability. GLASS formed the Local Land–Atmosphere Coupling (LoCo) project and working group to examine L-A interactions at the process level, focusing on understanding and quantifying these processes in nature and evaluating them in models. LoCo has produced an array of L-A coupling metrics for different applications and scales and has motivated a growing number of young scientists from around the world. This article provides an overview of the LoCo effort, including metric and model applications, along with scientific and programmatic developments and challenges.


Sign in / Sign up

Export Citation Format

Share Document