scholarly journals Regional Model Simulations of the 2008 Drought in Southern South America Using a Consistent Set of Land Surface Properties

2014 ◽  
Vol 27 (17) ◽  
pp. 6754-6778 ◽  
Author(s):  
Omar V. Müller ◽  
Ernesto Hugo Berbery ◽  
Domingo Alcaraz-Segura ◽  
Michael B. Ek

Abstract This work discusses the land surface–atmosphere interactions during the severe drought of 2008 in southern South America, which was among the most severe in the last 50 years in terms of both intensity and extent. Once precipitation returned to normal values, it took about two months for the soil moisture content and vegetation to recover. The land surface effects were examined by contrasting long-term simulations using a consistent set of satellite-derived annually varying land surface biophysical properties against simulations using the conventional land-cover types in the Weather Research and Forecasting Model–Noah land surface model (WRF–Noah). The new land-cover dataset is based on ecosystem functional properties that capture changes in vegetation status due to climate anomalies and land-use changes. The results show that the use of realistic information of vegetation states enhances the model performance, reducing the precipitation biases over the drought region and over areas of excessive precipitation. The precipitation bias reductions are attributed to the corresponding changes in greenness fraction, leaf area index, stomatal resistance, and surface roughness. The temperature simulation shows a generalized increase, which is attributable to a lower vegetation greenness and a doubling of the stomatal resistance that reduces the evapotranspiration rate. The increase of temperature has a beneficial effect toward the eastern part of the domain with a notable reduction of the bias, but not over the central region where the bias is increased. The overall results suggest that an improved representation of the surface processes may contribute to improving the predictive skill of the model system.

2017 ◽  
Author(s):  
Jordi Etchanchu ◽  
Vincent Rivalland ◽  
Simon Gascoin ◽  
Jérôme Cros ◽  
Aurore Brut ◽  
...  

Abstract. Agricultural landscapes often include a patchwork of crop fields whose seasonal evolution is dependent on specific crop rotation patterns and phenologies. This temporal and spatial heterogeneity affects surface hydrometeorological processes as simulated by land surface and distributed hydrological models. Sentinel-2 mission satellite remote sensing products allow for the monitoring of land cover and vegetation dynamics at unprecedented spatial resolutions and revisit frequencies (20 m and 5 days, respectively) that are fully compatible with such heterogeneous agricultural landscapes. Here, we evaluate the impact of Sentinel-2-like remote sensing data on the simulation of surface water and energy flux via the ISBA-SURFEX land surface model. The study area is a 24 km by 24 km agricultural zone in southwestern France. An initial reference simulation was conducted from 2006–2010 using the ECOCLIMAP-II database. This global numerical land ecosystem database was created at a 1 km resolution and includes an ecosystem classification with a consistent set of land surface parameters required for the model, such as the Leaf Area Index (LAI) and albedo measures. The LAI of ECOCLIMAP is climatologic and derived from a 2000–2005 analysis of MODIS satellite products. This low resolution induces that several vegetation covers can be mixed in a model cell. The climatic construction of LAI dynamics also suggests that there is no interannual variability in the vegetation cycle. A second simulation was performed by forcing the same model with annual land cover maps and monthly LAI values derived from a series of 105 8 m-resolution Formosat-2 images for the same period. Both simulations were conducted at the parcel scale, i.e., a computation unit covers an area of connected pixels of the same vegetation type (a crop field, forest patch, etc.). To evaluate our simulations, we used in situ measurements of evapotranspiration and latent and sensible heat flux from two eddy covariance stations in the study area. Our results show that the use of Formosat-2 high-resolution products significantly improves simulated evapotranspiration results with respect to ECOCLIMAP-II, especially when a surface is covered with summer crops (the correlation coefficient with monthly measurements is increased by roughly 0.3 and the root mean square error is decreased by roughly 31 %). This finding is attributable to a better description of LAI evolution processes reflected by Formosat-2 data, which further modify soil water content and drainage levels of deep soil reservoirs. Effects on annual drainage patterns remain small but significant, i.e., an increase roughly equivalent to 4 % of annual precipitation levels from Formosat-2 data in comparison to reference values. In smaller proportions, runoff is also increased by roughly 1 % of annual precipitation when using Formosat-2 data. This study illustrates the potential for the Sentinel-2 mission to better represent effects of crop management on water budgeting for large, anthropized river basins.


2009 ◽  
Vol 48 (2) ◽  
pp. 349-368 ◽  
Author(s):  
Dev Niyogi ◽  
Kiran Alapaty ◽  
Sethu Raman ◽  
Fei Chen

Abstract Current land surface schemes used for mesoscale weather forecast models use the Jarvis-type stomatal resistance formulations for representing the vegetation transpiration processes. The Jarvis scheme, however, despite its robustness, needs significant tuning of the hypothetical minimum-stomatal resistance term to simulate surface energy balances. In this study, the authors show that the Jarvis-type stomatal resistance/transpiration model can be efficiently replaced in a coupled land–atmosphere model with a photosynthesis-based scheme and still achieve dynamically consistent results. To demonstrate this transformative potential, the authors developed and coupled a photosynthesis, gas exchange–based surface evapotranspiration model (GEM) as a land surface scheme for mesoscale weather forecasting model applications. The GEM was dynamically coupled with a prognostic soil moisture–soil temperature model and an atmospheric boundary layer (ABL) model. This coupled system was then validated over different natural surfaces including temperate C4 vegetation (prairie grass and corn field) and C3 vegetation (soybean, fallow, and hardwood forest) under contrasting surface conditions (such as different soil moisture and leaf area index). Results indicated that the coupled model was able to realistically simulate the surface fluxes and the boundary layer characteristics over different landscapes. The surface energy fluxes, particularly for latent heat, are typically within 10%–20% of the observations without any tuning of the biophysical–vegetation characteristics, and the response to the changes in the surface characteristics is consistent with observations and theory. This result shows that photosynthesis-based transpiration/stomatal resistance models such as GEM, despite various complexities, can be applied for mesoscale weather forecasting applications. Future efforts for understanding the different scaling parameterizations and for correcting errors for low soil moisture and/or wilting vegetation conditions are necessary to improve model performance. Results from this study suggest that the GEM approach using the photosynthesis-based soil vegetation atmosphere transfer (SVAT) scheme is thus superior to the Jarvis-based approaches. Currently GEM is being implemented within the Noah land surface model for the community Weather Research and Forecasting (WRF) Advanced Research Version Modeling System (ARW) and the NCAR high-resolution land data assimilation system (HRLDAS), and validation is under way.


Land ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 398
Author(s):  
Kyla M. Dahlin ◽  
Donald Akanga ◽  
Danica L. Lombardozzi ◽  
David E. Reed ◽  
Gabriela Shirkey ◽  
...  

Land surface models (LSMs) predict how terrestrial fluxes of carbon, water, and energy change with abiotic drivers to inform the other components of Earth system models. Here, we focus on a single human-dominated watershed in southwestern Michigan, USA. We compare multiple processes in a commonly used LSM, the Community Land Model (CLM), to observational data at the single grid cell scale. For model inputs, we show correlations (Pearson’s R) ranging from 0.46 to 0.81 for annual temperature and precipitation, but a substantial mismatch between land cover distributions and their changes over time, with CLM correctly representing total agricultural area, but assuming large areas of natural grasslands where forests grow in reality. For CLM processes (outputs), seasonal changes in leaf area index (LAI; phenology) do not track satellite estimates well, and peak LAI in CLM is nearly double the satellite record (5.1 versus 2.8). Estimates of greenness and productivity, however, are more similar between CLM and observations. Summer soil moisture tracks in timing but not magnitude. Land surface reflectance (albedo) shows significant positive correlations in the winter, but not in the summer. Looking forward, key areas for model improvement include land cover distribution estimates, phenology algorithms, summertime radiative transfer modelling, and plant stress responses.


2016 ◽  
Vol 17 (11) ◽  
pp. 2941-2957 ◽  
Author(s):  
J. Alejandro Martinez ◽  
Francina Dominguez ◽  
Gonzalo Miguez-Macho

Abstract The effects of groundwater dynamics on the representation of water storage and evapotranspiration (ET) over southern South America are studied from simulations with the Noah-MP land surface model. The model is run with three different configurations: one including the Miguez-Macho and Fan groundwater scheme, another with the Simple Groundwater Model (SIMGM), and the other with free drainage at the bottom of the soil column. The first objective is to assess the effects of the groundwater schemes using a grid size typical of regional climate model simulations at the continental scale (20 km). The phase and amplitude of the fluctuations in the terrestrial water storage over the southern Amazon are improved with one of the groundwater schemes. An increase in the moisture in the top 2 m of the soil is found in those regions where the water table is closer to the land surface, including the western and southern Amazon and the La Plata basin. This induces an increase in ET over the southern La Plata basin, where ET is water limited. There is also a seasonal increase in ET during the dry season over parts of the southern Amazon. The second objective is to assess the role of the horizontal resolution on the effects induced by the Miguez-Macho and Fan groundwater scheme using simulations with grid sizes of 5 and 20 km. Over the La Plata basin, the effect of groundwater on ET is amplified at the 5-km resolution. Notably, over parts of the Amazon, the groundwater scheme increases ET only at the higher 5-km resolution.


2021 ◽  
Author(s):  
Wanshu Nie ◽  
Sujay V. Kumar ◽  
Kristi R. Arsenault ◽  
Christa D. Peters-Lidard ◽  
Iliana E. Mladenova ◽  
...  

Abstract. The Middle East and North Africa (MENA) region has experienced more frequent and severe drought events in recent decades, leading to increasingly pressing concerns over already strained food and water security. An effective drought monitoring and early warning system is thus critical to support risk mitigation and management by countries in the region. Here we investigate the potential for assimilation of leaf area index (LAI) and soil moisture observations to improve representation of the overall hydrological and carbon cycles and drought by an advanced land surface model. The results reveal that assimilating soil moisture does not meaningfully improve model representation of the hydrological and biospheric processes for this region, but rather it degrades simulation of interannual variation of evapotranspiration (ET) and carbon fluxes, mainly due to model weaknesses in representing dynamic phenology. However, assimilating LAI leads to greater improvement, especially for transpiration and carbon fluxes, by constraining the timing of simulated vegetation growth response to evolving climate conditions. LAI assimilation also helps to correct for the erroneous interaction between the dynamic phenology and irrigation during summertime, effectively reducing a large positive bias in ET and carbon fluxes. Independently assimilating LAI or soil moisture alters the categorization of drought, with the differences being greater for more severe drought categories. We highlight the vegetation representation in response to changing land use and hydroclimate as one of the key processes to be captured for building a successful drought early warning system for the MENA region.


2020 ◽  
Author(s):  
Souhail Boussetta ◽  
Gianpaolo Balsamo ◽  
Emanuel Arduini ◽  
Miguel Nogueira ◽  
Gabriele Arduini ◽  
...  

<p><span><span>The effects of vegetation and land use/land cover maps on surface energy and carbon fluxes predictions from land surface model are investigated. The model is applied at global scale and a comparison between two configurations using different land cover maps is performed. In the first configuration, the land cover is based on the operational GLCCv1.2 map, in the second the ESA-CCI land cover map is used.</span></span></p><p><span><span>Based on these two configurations, the observation operator that disaggregates the satellite-based leaf area index into high and low vegetation components is also modified to ensure optimal conservation of the observed LAI. The Seasonal variability of the vegetation cover is also investigated by introducing a modified lamber-beer formulation that allows varying the vegetation cover as a function of the LAI. </span></span></p>


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1362
Author(s):  
David Stevens ◽  
Pedro M. A. Miranda ◽  
René Orth ◽  
Souhail Boussetta ◽  
Gianpaolo Balsamo ◽  
...  

The surface-atmosphere turbulent exchanges couple the water, energy and carbon budgets in the Earth system. The biosphere plays an important role in the evaporation process, and vegetation related parameters such as the leaf area index (LAI), vertical root distribution and stomatal resistance are poorly constrained due to sparse observations at the spatio-temporal scales at which land surface models (LSMs) operate. In this study, we use the Carbon Hydrology Tiled European Center for Medium-Range Weather Forecasts (ECMWF) Scheme for Surface Exchanges over Land (CHTESSEL) model and investigate the sensitivity of the simulated turbulent fluxes to these vegetation related parameters. Observed data from 17 FLUXNET towers were used to force and evaluate model simulations with different vegetation parameter configurations. The replacement of the current LAI climatology used by CHTESSEL, by a new high-resolution climatology, representative of the station’s location, has a small impact on the simulated fluxes. Instead, a revision of the root profile considering a uniform root distribution reduces the underestimation of evaporation during water stress conditions. Despite the limitations of using only one model and a limited number of stations, our results highlight the relevance of root distribution in controlling soil moisture stress, which is likely to be applicable to other LSMs.


2013 ◽  
Vol 6 (1) ◽  
pp. 453-494 ◽  
Author(s):  
D. S. Moreira ◽  
S. R. Freitas ◽  
J. P. Bonatti ◽  
L. M. Mercado ◽  
N. M. É. Rosário ◽  
...  

Abstract. This article presents the development of a new numerical system denominated JULES-CCATT-BRAMS, which resulted from the coupling of the JULES surface model to the CCATT-BRAMS atmospheric chemistry model. The performance of this system in relation to several meteorological variables (wind speed at 10 m, air temperature at 2 m, dew point temperature at 2 m, pressure reduced to mean sea level and 6 h accumulated precipitation) and the CO2 concentration above an extensive area of South America is also presented, focusing on the Amazon basin. The evaluations were conducted for two periods, the wet (March) and dry (September) seasons of 2010. The statistics used to perform the evaluation included bias (BIAS) and root mean squared error (RMSE). The errors were calculated in relation to observations at conventional stations in airports and automatic stations. In addition, CO2 concentrations in the first model level were compared with meteorological tower measurements and vertical CO2 profiles were compared with aircraft data. The results of this study show that the JULES model coupled to CCATT-BRAMS provided a significant gain in performance in the evaluated atmospheric fields relative to those simulated by the LEAF (version 3) surface model originally utilized by CCATT-BRAMS. Simulations of CO2 concentrations in Amazonia and a comparison with observations are also discussed and show that the system presents a gain in performance relative to previous studies. Finally, we discuss a wide range of numerical studies integrating coupled atmospheric, land surface and chemistry processes that could be produced with the system described here. Therefore, this work presents to the scientific community a free tool, with good performance in relation to the observed data and re-analyses, able to produce atmospheric simulations/forecasts at different resolutions, for any period of time and in any region of the globe.


2017 ◽  
Vol 18 (3) ◽  
pp. 897-915 ◽  
Author(s):  
Jennifer L. Jefferson ◽  
Reed M. Maxwell ◽  
Paul G. Constantine

Abstract Land surface models, like the Common Land Model component of the ParFlow integrated hydrologic model (PF-CLM), are used to estimate transpiration from vegetated surfaces. Transpiration rates quantify how much water moves from the subsurface through the plant and into the atmosphere. This rate is controlled by the stomatal resistance term in land surface models. The Ball–Berry stomatal resistance parameterization relies, in part, on the rate of photosynthesis, and together these equations require the specification of 20 input parameters. Here, the active subspace method is applied to 2100 year-long PF-CLM simulations, forced by atmospheric data from California, Colorado, and Oklahoma, to identify which input parameters are important and how they relate to three quantities of interest: transpiration, stomatal resistance from the sunlit portion of the canopy, and stomatal resistance from the shaded portion. The slope (mp) and intercept (bp) parameters associated with the Ball–Berry parameterization are consistently important for all locations, along with five parameters associated with ribulose bisphosphate carboxylase/oxygenase (RuBisCO)- and light-limited rates of photosynthesis [CO2 Michaelis–Menten constant at 25°C (kc25), maximum ratio of oxygenation to carboxylation (ocr), quantum efficiency at 25°C (qe25), maximum rate of carboxylation at 25°C (vcmx25), and multiplier in the denominator of the equation used to compute the light-limited rate of photosynthesis (wj1)]. The importance of these input parameters, quantified by the active variable weight, and the relationship between the input parameters and quantities of interest vary seasonally and diurnally. Input parameter values influence transpiration rates most during midday, summertime hours when fluxes are large. This research informs model users about which photosynthesis and stomatal resistance parameters should be more carefully selected. Quantifying sensitivities associated with the stomatal resistance term is necessary to better understand transpiration estimates from land surface models.


2017 ◽  
Author(s):  
Daniel S. Goll ◽  
Nicolas Vuichard ◽  
Fabienne Maignan ◽  
Albert Jornet-Puig ◽  
Jordi Sardans ◽  
...  

Abstract. Land surface models rarely incorporate the terrestrial phosphorus cycle and its interactions with the carbon cycle, despite the extensive scientific debate about the importance of nitrogen and phosphorus supply for future land carbon uptake. We describe a representation of the terrestrial phosphorus cycle for the land surface model ORCHIDEE, and evaluate it with data from nutrient manipulation experiments along a soil formation chronosequence in Hawaii. ORCHIDEE accounts for influence of nutritional state of vegetation on tissue nutrient concentrations, photosynthesis, plant growth, biomass allocation, biochemical (phosphatase-mediated) mineralization and biological nitrogen fixation. Changes in nutrient content (quality) of litter affect the carbon use efficiency of decomposition and in return the nutrient availability to vegetation. The model explicitly accounts for root zone depletion of phosphorus as a function of root phosphorus uptake and phosphorus transport from soil to the root surface. The model captures the observed differences in the foliage stoichiometry of vegetation between an early (300yr) and a late stage (4.1 Myr) of soil development. The contrasting sensitivities of net primary productivity to the addition of either nitrogen, phosphorus or both among sites are in general reproduced by the model. As observed, the model simulates a preferential stimulation of leaf level productivity when nitrogen stress is alleviated, while leaf level productivity and leaf area index are stimulated equally when phosphorus stress is alleviated. The nutrient use efficiencies in the model are lower as observed primarily due to biases in the nutrient content and turnover of woody biomass. We conclude that ORCHIDEE is able to reproduce the shift from nitrogen to phosphorus limited net primary productivity along the soil development chronosequence, as well as the contrasting responses of net primary productivity to nutrient addition.


Sign in / Sign up

Export Citation Format

Share Document