scholarly journals Formation of Convective Clouds at the Foothills of the Tropical Eastern Andes (South Ecuador)

2009 ◽  
Vol 48 (8) ◽  
pp. 1682-1695 ◽  
Author(s):  
Jörg Bendix ◽  
Katja Trachte ◽  
Jan Cermak ◽  
Rütger Rollenbeck ◽  
Thomas Nauß

Abstract This study examines the seasonal and diurnal dynamics of convective cloud entities—small cells and a mesoscale convective complex–like pattern—in the foothills of the tropical eastern Andes. The investigation is based on Geostationary Operational Environmental Satellite-East (GOES-E) satellite imagery (2005–07), images of a scanning X-band rain radar, and data from regular meteorological stations. The work was conducted in the framework of a major ecological research program, the Research Unit 816, in which meteorological instruments are installed in the Rio San Francisco valley, breaching the eastern Andes of south Ecuador. GOES image segmentation to discriminate convective cells and other clouds is performed for a 600 × 600 km2 target area, using the concept of connected component labeling by applying the 8-connectivity scheme as well as thresholds for minimum blackbody temperature, spatial extent, and eccentricity of the extracted components. The results show that the formation of convective clouds in the lowland part of the target area mainly occurs in austral summer during late afternoon. Nocturnal enhancement of cell formation could be observed from October to April (particularly February–April) between 0100 and 0400 LST (LST = UTC − 5 h) in the Andean foothill region of the target area, which is the relatively dry season of the adjacent eastern Andean slopes. Nocturnal cell formation is especially marked southeast of the Rio San Francisco valley in the southeast Andes of Ecuador, where a confluence area of major katabatic outflow systems coincide with a quasi-concave shape of the Andean terrain line. The confluent cold-air drainage flow leads to low-level instability and cellular convection in the warm, moist Amazon air mass. The novel result of the current study is to provide statistical evidence that, under these special topographic situations, katabatic outflow is strong enough to generate mainly mesoscale convective complexes (MCCs) with a great spatial extent. The MCC-like systems often increase in expanse during their mature phase and propagate toward the Andes because of the prevailing upper-air easterlies, causing early morning peaks of rainfall in the valley of the Rio San Francisco. It is striking that MCC formation in the foothill area is clearly reduced during the main rainy season [June–August (JJA)] of the higher eastern Andean slopes. At a first glance, this contradiction can be explained by rainfall persistence in the Rio San Francisco valley, which is clearly lower during the time of convective activity (December–April) in comparison with JJA, during which low-intensity rainfall is released by predominantly advective clouds with greater temporal endurance.

2021 ◽  
Author(s):  
Joydev Ghosh

<div>In LTE-A (LTE-Advanced), the access network cell formation is an integrated form of outdoor unit and indoor unit. With the indoor unit extension the access network becomes heterogeneous (HetNet). HetNet is a straightforward way to provide quality of service (QoS) in terms better network coverage and high data rate. Although, due to uncoordinated, densely deployed small cells large interference may occur, particularly in case of operating small cells within the spectrum of macro base stations (MBS). This paper probes the impact of small cell on the outage probability and the average network throughput enhancement. The positions of the small cells are retained random and modelled with homogeneous Poisson Point Process (PPP) and Matérn Cluster process (MCP). The paper provides an analytic form which permits to compute the outage probability, including the mostly applied fast fading channel types. Furthermore, simulations are evaluated in order to calculate the average network throughput for both random processes. Simulation results highlights that the network throughput remarkably grows due to small cell deployment.</div>


2017 ◽  
Vol 17 (15) ◽  
pp. 9585-9598 ◽  
Author(s):  
Qian Chen ◽  
Ilan Koren ◽  
Orit Altaratz ◽  
Reuven H. Heiblum ◽  
Guy Dagan ◽  
...  

Abstract. Understanding aerosol effects on deep convective clouds and the derived effects on the radiation budget and rain patterns can largely contribute to estimations of climate uncertainties. The challenge is difficult in part because key microphysical processes in the mixed and cold phases are still not well understood. For deep convective clouds with a warm base, understanding aerosol effects on the warm processes is extremely important as they set the initial and boundary conditions for the cold processes. Therefore, the focus of this study is the warm phase, which can be better resolved. The main question is: How do aerosol-derived changes in the warm phase affect the properties of deep convective cloud systems? To explore this question, we used a weather research and forecasting (WRF) model with spectral bin microphysics to simulate a deep convective cloud system over the Marshall Islands during the Kwajalein Experiment (KWAJEX). The model results were validated against observations, showing similarities in the vertical profile of radar reflectivity and the surface rain rate. Simulations with larger aerosol loading resulted in a larger total cloud mass, a larger cloud fraction in the upper levels, and a larger frequency of strong updrafts and rain rates. Enlarged mass both below and above the zero temperature level (ZTL) contributed to the increase in cloud total mass (water and ice) in the polluted runs. Increased condensation efficiency of cloud droplets governed the gain in mass below the ZTL, while both enhanced condensational and depositional growth led to increased mass above it. The enhanced mass loading above the ZTL acted to reduce the cloud buoyancy, while the thermal buoyancy (driven by the enhanced latent heat release) increased in the polluted runs. The overall effect showed an increased upward transport (across the ZTL) of liquid water driven by both larger updrafts and larger droplet mobility. These aerosol effects were reflected in the larger ratio between the masses located above and below the ZTL in the polluted runs. When comparing the net mass flux crossing the ZTL in the clean and polluted runs, the difference was small. However, when comparing the upward and downward fluxes separately, the increase in aerosol concentration was seen to dramatically increase the fluxes in both directions, indicating the aerosol amplification effect of the convection and the affected cloud system properties, such as cloud fraction and rain rate.


2009 ◽  
Vol 9 (5) ◽  
pp. 1671-1678 ◽  
Author(s):  
S. Davolio ◽  
D. Mastrangelo ◽  
M. M. Miglietta ◽  
O. Drofa ◽  
A. Buzzi ◽  
...  

Abstract. During the MAP D-PHASE (Mesoscale Alpine Programme, Demonstration of Probabilistic Hydrological and Atmospheric Simulation of flood Events in the Alpine region) Operational Period (DOP, 1 June–30 November 2007) the most intense precipitation event observed south of the Alps occurred over the Venice Lagoon. In the early morning of 26 September 2007, a mesoscale convective system formed in an area of convergence between a south-easterly low level jet flowing along the Adriatic Sea and a north-easterly barrier-type wind south of the Alps, and was responsible for precipitation exceeding 320 mm in less than 12 h, 240 mm of which in only 3 h. The forecast rainfall fields, provided by several convection resolving models operated daily for the D-PHASE project, have been compared. An analysis of different aspects of the event, such as the relevant mechanisms leading to the flood, the main characteristics of the MCS, and an estimation of the predictability of the episode, has been performed using a number of high resolution, convection resolving models (MOLOCH, WRF and MM5). Strong sensitivity to initial and boundary conditions and to model parameterization schemes has been found. Although low predictability is expected due to the convective nature of rainfall, the forecasts made more than 24 h in advance indicate that the larger scale environment driving the dynamics of this event played an important role in favouring the achievement of a relatively good accuracy in the precipitation forecasts.


2017 ◽  
Vol 7 (2) ◽  
pp. 58 ◽  
Author(s):  
Shailendra Kumar

Tropical Rainfall Measuring Mission Precipitation Radar (TRMM-PR) based vertical structure in intense convective precipitation is presented here for Indian and Austral summer monsoon seasons. TRMM 2A23 data is used to identify the convective echoes in PR data. Two types of cloud cells are constructed here, namely intense convective cloud (ICC) and most intense convective cloud (MICC). ICC consists of PR radar beams having Ze>=40 dBZ above 1.5 km in convective precipitation area, whereas MICC, consists of maximum reflectivity at each altitude in convective precipitation area, with at least one radar pixel must be higher than 40 dBZ or more above 1.5 km within the selected areas. We have selected 20 locations across the tropics to see the regional differences in the vertical structure of convective clouds. One of the important findings of the present study is identical behavior in the average vertical profiles in intense convective precipitation in lower troposphere across the different areas. MICCs show the higher regional differences compared to ICCs between 5-12 km altitude. Land dominated areas show higher regional differences and Southeast south America (SESA) has the strongest vertical profile (higher Ze at higher altitude) followed by Indo-Gangetic plain (IGP), Africa, north Latin America whereas weakest vertical profile occurs over Australia. Overall SESA (41%) and IGP (36%) consist higher fraction of deep convective clouds (>10 km), whereas, among the tropical oceanic areas, Western (Eastern) equatorial Indian ocean consists higher fraction of low (high) level of convective clouds. Nearly identical average vertical profiles over the tropical oceanic areas, indicate the similarity in the development of intense convective clouds and useful while considering them in model studies.


2014 ◽  
Vol 53 (7) ◽  
pp. 1844-1857 ◽  
Author(s):  
Chunpeng Wang ◽  
Zhengzhao Johnny Luo ◽  
Xiuhong Chen ◽  
Xiping Zeng ◽  
Wei-Kuo Tao ◽  
...  

AbstractCloud-top temperature (CTT) is an important parameter for convective clouds and is usually different from the 11-μm brightness temperature due to non-blackbody effects. This paper presents an algorithm for estimating convective CTT by using simultaneous passive [Moderate Resolution Imaging Spectroradiometer (MODIS)] and active [CloudSat + Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)] measurements of clouds to correct for the non-blackbody effect. To do this, a weighting function of the MODIS 11-μm band is explicitly calculated by feeding cloud hydrometer profiles from CloudSat and CALIPSO retrievals and temperature and humidity profiles based on ECMWF analyses into a radiation transfer model. Among 16 837 tropical deep convective clouds observed by CloudSat in 2008, the averaged effective emission level (EEL) of the 11-μm channel is located at optical depth ~0.72, with a standard deviation of 0.3. The distance between the EEL and cloud-top height determined by CloudSat is shown to be related to a parameter called cloud-top fuzziness (CTF), defined as the vertical separation between −30 and 10 dBZ of CloudSat radar reflectivity. On the basis of these findings a relationship is then developed between the CTF and the difference between MODIS 11-μm brightness temperature and physical CTT, the latter being the non-blackbody correction of CTT. Correction of the non-blackbody effect of CTT is applied to analyze convective cloud-top buoyancy. With this correction, about 70% of the convective cores observed by CloudSat in the height range of 6–10 km have positive buoyancy near cloud top, meaning clouds are still growing vertically, although their final fate cannot be determined by snapshot observations.


2019 ◽  
Vol 58 (4) ◽  
pp. 887-902 ◽  
Author(s):  
Zhiguo Yue ◽  
Daniel Rosenfeld ◽  
Guihua Liu ◽  
Jin Dai ◽  
Xing Yu ◽  
...  

AbstractThe advent of the Visible Infrared Imager Radiometer Suite (VIIRS) on board the Suomi NPP (SNPP) satellite made it possible to retrieve a new class of convective cloud properties and the aerosols that they ingest. An automated mapping system of retrieval of some properties of convective cloud fields over large areas at the scale of satellite coverage was developed and is presented here. The system is named Automated Mapping of Convective Clouds (AMCC). The input is level-1 VIIRS data and meteorological gridded data. AMCC identifies the cloudy pixels of convective elements; retrieves for each pixel its temperature T and cloud drop effective radius re; calculates cloud-base temperature Tb based on the warmest cloudy pixels; calculates cloud-base height Hb and pressure Pb based on Tb and meteorological data; calculates cloud-base updraft Wb based on Hb; calculates cloud-base adiabatic cloud drop concentrations Nd,a based on the T–re relationship, Tb, and Pb; calculates cloud-base maximum vapor supersaturation S based on Nd,a and Wb; and defines Nd,a/1.3 as the cloud condensation nuclei (CCN) concentration NCCN at that S. The results are gridded 36 km × 36 km data points at nadir, which are sufficiently large to capture the properties of a field of convective clouds and also sufficiently small to capture aerosol and dynamic perturbations at this scale, such as urban and land-use features. The results of AMCC are instrumental in observing spatial covariability in clouds and CCN properties and for obtaining insights from such observations for natural and man-made causes. AMCC-generated maps are also useful for applications from numerical weather forecasting to climate models.


Sign in / Sign up

Export Citation Format

Share Document