scholarly journals Planetary Scale Selection of the Madden–Julian Oscillation*

2009 ◽  
Vol 66 (8) ◽  
pp. 2429-2443 ◽  
Author(s):  
Tim Li ◽  
Chunhua Zhou

Abstract Numerical experiments with a 2.5-layer and a 2-level model are conducted to examine the mechanism for the planetary scale selection of the Madden–Julian oscillation (MJO). The strategy here is to examine the evolution of an initial perturbation that has a form of the equatorial Kelvin wave at zonal wavenumbers of 1 to 15. In the presence of a frictional boundary layer, the most unstable mode prefers a short wavelength under a linear heating; but with a nonlinear heating, the zonal wavenumber 1 grows fastest. This differs significantly from a model without the boundary layer, in which neither linear nor nonlinear heating leads to the long wave selection. Thus, the numerical simulations point out the crucial importance of the combined effect of the nonlinear heating and the frictional boundary layer in the MJO planetary scale selection. The cause of this scale selection under the nonlinear heating is attributed to the distinctive phase speeds between the dry Kelvin wave and the wet Kelvin–Rossby wave couplet. The faster dry Kelvin wave triggered by a convective branch may catch up and suppress another convective branch, which travels ahead of it at the phase speed of the wet Kelvin–Rossby wave couplet if the distance between the two neighboring convective branches is smaller than a critical distance (about 16 000 km). The interference between the dry Kelvin wave and the wet Kelvin–Rossby wave couplet eventually dissipates and “filters out” shorter wavelength perturbations, leading to a longwave selection. The boundary layer plays an important role in destabilizing the MJO through frictional moisture convergences and in retaining the in-phase zonal wind–pressure structure.

2017 ◽  
Vol 50 (9-10) ◽  
pp. 3441-3456 ◽  
Author(s):  
Yuntao Wei ◽  
Fei Liu ◽  
Mu Mu ◽  
Hong-Li Ren

Climate ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 2
Author(s):  
Patrick Haertel

The Madden Julian Oscillation (MJO) is a large-scale convective and circulation system that propagates slowly eastward over the equatorial Indian and Western Pacific Oceans. Multiple, conflicting theories describe its growth and propagation, most involving equatorial Kelvin and/or Rossby waves. This study partitions MJO circulations into Kelvin and Rossby wave components for three sets of data: (1) a modeled linear response to an MJO-like heating; (2) a composite MJO based on atmospheric sounding data; and (3) a composite MJO based on data from a Lagrangian atmospheric model. The first dataset has a simple dynamical interpretation, the second provides a realistic view of MJO circulations, and the third occurs in a laboratory supporting controlled experiments. In all three of the datasets, the propagation of Kelvin waves is similar, suggesting that the dynamics of Kelvin wave circulations in the MJO can be captured by a system of equations linearized about a basic state of rest. In contrast, the Rossby wave component of the observed MJO’s circulation differs substantially from that in our linear model, with Rossby gyres moving eastward along with the heating and migrating poleward relative to their linear counterparts. These results support the use of a system of equations linearized about a basic state of rest for the Kelvin wave component of MJO circulation, but they question its use for the Rossby wave component.


Climate ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 24
Author(s):  
Patrick Haertel

The Madden–Julian Oscillation (MJO) is a planetary-scale convective disturbance that typically forms in the equatorial Indian Ocean, propagates slowly eastward, and dissipates near the date line. This study examines how the MJO changes in response to a changing radiative forcing in a fully-Lagrangian coupled model (LCM) that is shown to simulate robust and realistic MJOs. After the LCM is spun up for 160 years to reproduce the late 20th century climate, non-water-vapor longwave optical depth is increased over 70 years to model the effects of increasing concentrations of greenhouse gases. The model is then run for another 30 years without additional changes to the radiative forcing. After the radiative forcing is modified, the MJO generally becomes more frequent and intense, but it is also more variable from one year to the next. Not only do composite MJO rainfall perturbations increase, but wind, temperature, and moisture perturbations also become stronger. The aspect of the MJO’s structure that changes the most is the largely dry equatorial Kelvin wave circulation that circumnavigates the globe between moist phases of the MJO. Potential impacts of these changes included alterations to the way in which the MJO modulates tropical cyclones, monsoon disturbances, and El Niño.


2012 ◽  
Vol 69 (7) ◽  
pp. 2107-2111 ◽  
Author(s):  
Paul E. Roundy

Abstract The zonal wavenumber–frequency power spectrum of outgoing longwave radiation in the global tropics suggests that power in convectively coupled Kelvin waves and the Madden–Julian oscillation (MJO) is organized into two distinct spectral peaks with a minimum in power in between. This work demonstrates that integration of wavelet power in the wavenumber–frequency domain over geographical regions of moderate trade winds yields a similar pronounced spectral gap between these peaks. In contrast, integration over regions of background low-level westerly wind yields a continuum of power with no gap between the MJO and Kelvin bands. Results further show that signals in tropical convection are redder in frequency in these low-level westerly wind zones, confirming that Kelvin waves tend to propagate more slowly eastward over the warm pool than other parts of the world. Results are consistent with the perspective that portions of disturbances labeled as Kelvin waves and the MJO that are proximate to Kelvin wave dispersion curves exist as a continuum over warm pool regions.


2007 ◽  
Vol 64 (12) ◽  
pp. 4400-4416 ◽  
Author(s):  
Hirohiko Masunaga

Abstract The Madden–Julian oscillation (MJO), Kelvin wave, and equatorial Rossby (ER) wave—collectively called intraseasonal oscillations (ISOs)—are investigated using a 25-yr record of outgoing longwave radiation (OLR) measurements as well as the associated dynamical fields. The ISO modes are detected by applying bandpass filters to the OLR data in the frequency–wavenumber space. An automated wave-tracking algorithm is applied to each ISO mode so that convection centers accompanied with the ISOs are traced in space and time in an objective fashion. The identified paths of the individual ISO modes are first examined and found strongly modulated regionally and seasonally. The dynamical structure is composited with respect to the convection centers of each ISO mode. A baroclinic mode of the combined Rossby and Kelvin structure is prominent for the MJO, consistent with existing work. The Kelvin wave exhibits a low-level wind field resembling the shallow-water solution, while a slight lead of low-level convergence over convection suggests the impact of frictional boundary layer convergence on Kelvin wave dynamics. A lagged composite analysis reveals that the MJO is accompanied with a Kelvin wave approaching from the west preceding the MJO convective maximum in austral summer. MJO activity then peaks as the Kelvin and ER waves constructively interfere to enhance off-equatorial boundary layer convergence. The MJO leaves a Kelvin wave emanating to the east once the peak phase is passed. The approaching Kelvin wave prior to the development of MJO convection is absent in boreal summer and fall. The composite ER wave, loosely concentrated around the MJO, is nearly stationary throughout. A possible scenario to physically translate the observed result is also discussed.


2017 ◽  
Vol 74 (10) ◽  
pp. 3473-3489 ◽  
Author(s):  
Jun-Ichi Yano ◽  
Joseph J. Tribbia

Abstract The Madden–Julian oscillation (MJO), a planetary-scale eastward-propagating coherent structure with periods of 30–60 days, is a prominent manifestation of intraseasonal variability in the tropical atmosphere. It is widely presumed that small-scale moist cumulus convection is a critical part of its dynamics. However, the recent results from high-resolution modeling as well as data analysis suggest that the MJO may be understood by dry dynamics to a leading-order approximation. Simple, further theoretical considerations presented herein suggest that if it is to be understood by dry dynamics, the MJO is most likely a strongly nonlinear solitary Rossby wave. Under a global quasigeostrophic equivalent-barotropic formulation, modon theory provides such analytic solutions. Stability and the longevity of the modon solutions are investigated with a global shallow-water model. The preferred modon solutions with the greatest longevities compare well overall with the observed MJO in scale and phase velocity within the factors.


2013 ◽  
Vol 70 (10) ◽  
pp. 3147-3156 ◽  
Author(s):  
Fei Liu ◽  
Bin Wang

Abstract This work is an extension and improvement of the minimal Madden–Julian oscillation (MJO) “skeleton” model developed by Majda and Stechmann, which can capture some important features of the MJO—slow eastward propagation, quadrupole-vortex structure, and independence of frequency on wavelength—but is unable to produce unstable growth and selection of eastward-propagating planetary waves. With the addition of planetary boundary layer frictional moisture convergence, these deficiencies can be remedied. The frictional boundary layer “selects” the planetary-scale eastward propagation as the most unstable mode, but the dynamics remains confined to atmospheric processes only. Here the authors study the role of air–sea interaction by implementing an oceanic mixed-layer (ML) model of Wang and Xie into the MJO skeleton model. In this new air–sea coupled skeleton model, the features of the original skeleton model remain; additionally, the air–sea interaction under mean westerly winds is shown to produce a strong instability that selectively destabilizes the eastward-propagating planetary-scale waves. Although the cloud–shortwave radiation–sea surface temperature (CRS) feedback destabilizes both eastward and westward modes, the air–sea feedback associated with the evaporation and oceanic entrainment favors planetary-scale eastward modes. Over the Western Hemisphere where easterly background winds prevail, the evaporation and entrainment feedbacks yield damped modes, indicating that longitudinal variation of the mean surface winds plays an important role in regulation of the MJO intensity in addition to the longitudinal variation of the mean sea surface temperature or mean moist static stability. This theoretical analysis suggests that accurate simulation of the climatological mean state is critical for capturing the realistic air–sea interaction and thus the MJO.


2019 ◽  
Vol 76 (8) ◽  
pp. 2463-2480 ◽  
Author(s):  
Vassili Kitsios ◽  
Terence J. O’Kane ◽  
Nedjeljka Žagar

Abstract The Madden–Julian oscillation (MJO) is presented as a series of interacting Rossby and inertial gravity waves of varying vertical scales and meridional extents. These components are isolated by decomposing reanalysis fields into a set of normal mode functions (NMF), which are orthogonal eigenvectors of the linearized primitive equations on a sphere. The NMFs that demonstrate spatial properties compatible with the MJO are inertial gravity waves of zonal wavenumber k = 1 and the lowest meridional index n = 0, and Rossby waves with (k, n) = (1, 1). For these horizontal scales, there are multiple small vertical-scale baroclinic modes that have temporal properties indicative of the MJO. On the basis of one such eastward-propagating inertial gravity wave (i.e., a Kelvin wave), composite averages of the Japanese 55-year Reanalysis demonstrate an eastward propagation of the velocity potential, and oscillation of outgoing longwave radiation and precipitation fields over the Maritime Continent, with an MJO-appropriate temporal period. A cross-spectral analysis indicates that only the MJO time scale is coherent between this Kelvin wave and the more energetic modes. Four mode clusters are identified: Kelvin waves of correct phase period and direction, Rossby waves of correct phase period, energetic Kelvin waves of larger vertical scales and meridional extents extending into the extratropics, and energetic Rossby waves of spatial scales similar to that of the energetic Kelvin waves. We propose that within this normal mode framework, nonlinear interactions between the aforementioned mode groups are required to produce an energetic MJO propagating eastward with an intraseasonal phase period. By virtue of the selected mode groups, this theory encompasses both multiscale and tropical–extratropical interactions.


2011 ◽  
Vol 68 (11) ◽  
pp. 2524-2536 ◽  
Author(s):  
Bin Wang ◽  
Fei Liu

Abstract The Madden–Julian oscillation (MJO) is an equatorial planetary-scale circulation system coupled with a multiscale convective complex, and it moves eastward slowly (about 5 m s−1) with a horizontal quadrupole vortex and vertical rearward-tilted structure. The nature and role of scale interaction (SI) is one of the elusive aspects of the MJO dynamics. Here a prototype theoretical model is formulated to advance the current understanding of the nature of SI in MJO dynamics. The model integrates three essential physical elements: (a) large-scale equatorial wave dynamics driven by boundary layer frictional convergence instability (FCI), (b) effects of the upscale eddy momentum transfer (EMT) by vertically tilted synoptic systems resulting from boundary layer convergence and multicloud heating, and (c) interaction between planetary-scale wave motion and synoptic-scale systems (the eastward-propagating super cloud clusters and westward-propagating 2-day waves). It is shown that the EMT mechanism tends to yield a stationary mode with a quadrupole vortex structure (enhanced Rossby wave component), whereas the FCI yields a relatively fast eastward-moving and rearward-tilted Gill-like pattern (enhanced Kelvin wave response). The SI instability stems from corporative FCI or EMT mechanisms, and its property is a mixture of FCI and EMT modes. The properties of the unstable modes depend on the proportion of deep convective versus stratiform/congestus heating or the ratio of deep convective versus total amount of heating. With increasing stratiform/congestus heating, the FCI weakens while the EMT becomes more effective. A growing SI mode has a horizontal quadrupole vortex and rearward-tilted structure and prefers slow eastward propagation, which resembles the observed MJO. The FCI sets the rearward tilt and eastward propagation, while the EMT slows down the propagation speed. The theoretical results presented here point to the need to observe multicloud structure and vertical heating profiles within the MJO convective complex and to improve general circulation models’ capability to reproduce correct partitioning of cloud amounts between deep convective and stratiform/congestus clouds. Limitations and future work are also discussed.


Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 324
Author(s):  
Huiqun Wang ◽  
Gonzalo González Abad

An image processing technique is used to derive cloud masks from the color Mars Daily Global Maps (MDGMs) that are composed from the Mars Reconnaissance Orbiter (MRO) Mars Color Imager (MARCI) wide-angle image swaths. The blue channel of each MDGM is used to select cloud candidates and the blue-to-red ratio map is compared with a reference ratio map to filter out false positives. Quality control is performed manually. The derived cloud masks cover 1 Mars year from the summer of Mars year (MY) 28 to the summer of MY 29. The product has a 0.1° longitude by 0.1° latitude resolution and is available each day. This makes it possible to characterize the evolution of the tropical cloud belt from several new perspectives. The tropical cloud belt steadily builds up during northern spring and early summer, peaks near the early- to mid-summer transitional period, and rapidly declines afterward. From the perspective of cloud occurrence frequency and time mean, the cloud belt appears meandrous and zonally discontinuous, with minima in the Amazonis Planitia and Arabia Terra longitudinal sectors. A pronounced cloud branch diverges from the main cloud belt and extends from the Valles Marineris towards the Noachis and Hellas region. The cloud belt exhibits noticeable oscillatory behavior whereby cloud brightening alternates between the western and eastern hemispheres near the equator with a periodicity between 20 and 30 sols. The cloud belt oscillation occurred each Mars year around Ls = 140°, except for the Mars years when intense dust storms made disruptions. The phenomenon appears to be associated with an eastward propagating equatorial Kelvin wave with zonal wavenumber 1. This wave has a much longer wave period than the diurnal and semidiurnal Kelvin waves discussed in most of the previous studies and may be an important factor for the intra-seasonal variability of the tropical cloud belt. The convolution of clouds’ local time variation with MRO’s orbit shift pattern results in a seemingly highly regular 5-day traveling wave in Hovmöller diagrams of cloud masks.


Sign in / Sign up

Export Citation Format

Share Document