A Model for Scale Interaction in the Madden–Julian Oscillation*

2011 ◽  
Vol 68 (11) ◽  
pp. 2524-2536 ◽  
Author(s):  
Bin Wang ◽  
Fei Liu

Abstract The Madden–Julian oscillation (MJO) is an equatorial planetary-scale circulation system coupled with a multiscale convective complex, and it moves eastward slowly (about 5 m s−1) with a horizontal quadrupole vortex and vertical rearward-tilted structure. The nature and role of scale interaction (SI) is one of the elusive aspects of the MJO dynamics. Here a prototype theoretical model is formulated to advance the current understanding of the nature of SI in MJO dynamics. The model integrates three essential physical elements: (a) large-scale equatorial wave dynamics driven by boundary layer frictional convergence instability (FCI), (b) effects of the upscale eddy momentum transfer (EMT) by vertically tilted synoptic systems resulting from boundary layer convergence and multicloud heating, and (c) interaction between planetary-scale wave motion and synoptic-scale systems (the eastward-propagating super cloud clusters and westward-propagating 2-day waves). It is shown that the EMT mechanism tends to yield a stationary mode with a quadrupole vortex structure (enhanced Rossby wave component), whereas the FCI yields a relatively fast eastward-moving and rearward-tilted Gill-like pattern (enhanced Kelvin wave response). The SI instability stems from corporative FCI or EMT mechanisms, and its property is a mixture of FCI and EMT modes. The properties of the unstable modes depend on the proportion of deep convective versus stratiform/congestus heating or the ratio of deep convective versus total amount of heating. With increasing stratiform/congestus heating, the FCI weakens while the EMT becomes more effective. A growing SI mode has a horizontal quadrupole vortex and rearward-tilted structure and prefers slow eastward propagation, which resembles the observed MJO. The FCI sets the rearward tilt and eastward propagation, while the EMT slows down the propagation speed. The theoretical results presented here point to the need to observe multicloud structure and vertical heating profiles within the MJO convective complex and to improve general circulation models’ capability to reproduce correct partitioning of cloud amounts between deep convective and stratiform/congestus clouds. Limitations and future work are also discussed.

2012 ◽  
Vol 69 (9) ◽  
pp. 2749-2758 ◽  
Author(s):  
Fei Liu ◽  
Bin Wang

Abstract The Madden–Julian oscillation (MJO) is a multiscale system. A skeleton model, developed by Majda and Stechmann, can capture some of planetary-scale aspects of observed features such as slow eastward propagation, nondispersive behavior, and quadrupole-vortex structure. However, the Majda–Stechmann model cannot explain the source of instability and the preferred planetary scale of the MJO. Since the MJO major convection region is leaded by its planetary boundary layer (PBL) moisture convergence, here a frictional skeleton model is built by implementing a slab PBL into the neutral skeleton model. As a skeleton model allowing the scale interaction, this model is only valid for large-scale waves. This study shows that the PBL frictional convergence provides a strong instability source for the long eastward modes, although it also destabilizes very short westward modes. For the long waves (wavenumber less than 5), the PBL Ekman pumping moistens the low troposphere to the east of the MJO convective envelope, and sets up favorable moist conditions to destabilize the MJO and favor only eastward modes. Sensitivity experiments show that a weak PBL friction will enhance the instability slightly. The sea surface temperature (SST) with a maximum at the equator also prefers the long eastward modes. These theoretical analysis results encourage further observations on the PBL regulation of mesosynoptic-scale motions, and exploration of the interaction between PBL and multiscale motions, associated with the MJO to improve the MJO simulation in general circulation models (GCMs).


2015 ◽  
Vol 28 (5) ◽  
pp. 1881-1904 ◽  
Author(s):  
Yanjuan Guo ◽  
Duane E. Waliser ◽  
Xianan Jiang

Abstract The relationship between a model’s performance in simulating the Madden–Julian oscillation (MJO) and convectively coupled equatorial wave (CCEW) activity during wintertime is examined by analyzing precipitation from 26 general circulation models (GCMs) participating in the MJO Task Force/Global Energy and Water Cycle Experiment (GEWEX) Atmospheric System Study (GASS) MJO model intercomparison project as well as observations based on the Tropical Rainfall Measuring Mission (TRMM). A model’s performance in simulating the MJO is determined by how faithfully it reproduces the eastward propagation of the large-scale intraseasonal variability (ISV) compared to TRMM observations. Results suggest that models that simulate a better MJO tend to 1) have higher fractional variances for various high-frequency wave modes (Kelvin, mixed Rossby–gravity, and westward and eastward inertio-gravity waves), which are defined by the ratios of wave variances of specific wave modes to the “total” variance, and 2) exhibit stronger CCEW variances in association with the eastward-propagating ISV precipitation anomalies for these high-frequency wave modes. The former result is illustrative of an alleviation in the good MJO models of the widely reported GCM deficiency in simulating the correct distribution of variance in tropical convection [i.e., typically too weak (strong) variance in the high- (low-) frequency spectrum of the precipitation]. The latter suggests better coherence and stronger interactions between these aforementioned high-frequency CCEWs and the ISV envelope in good MJO models. Both factors likely contribute to the improved simulation of the MJO in a GCM.


2017 ◽  
Vol 30 (19) ◽  
pp. 7933-7952 ◽  
Author(s):  
Bin Wang ◽  
Sun-Seon Lee

Abstract Eastward propagation is an essential characteristic of the Madden–Julian oscillation (MJO). Yet, simulation of MJO propagation in general circulation models (GCMs) remains a major challenge and understanding the causes of propagation remains controversial. The present study explores why the GCMs have diverse performances in MJO simulation by diagnosis of 24 GCM simulations. An intrinsic linkage is found between MJO propagation and the zonal structural asymmetry with respect to the MJO convective center. The observed and realistically simulated MJO eastward propagations are characterized by stronger Kelvin easterly waves than Rossby westerly waves in the lower troposphere, which is opposite to the Gill pattern where Rossby westerly waves are 2 times stronger than Kelvin easterly waves. The GCMs simulating stronger Rossby westerly waves tend to show a stationary MJO. MJO propagation performances are robustly correlated with the quality of simulated zonal asymmetries in the 850-hPa equatorial zonal winds, 700-hPa diabatic heating, 1000–700-hPa equivalent potential temperature, and convective instability. The models simulating realistic MJO propagation are exemplified by an eastward propagation of boundary layer moisture convergence (BLMC) that leads precipitation propagation by about 5 days. The BLMC stimulates MJO eastward propagation by preconditioning and predestabilizing the atmosphere, and by generating lower-tropospheric heating and available potential energy to the east of precipitation center. The MJO structural asymmetry is generated by the three-way interaction among convective heating, moisture, and equatorial wave and boundary layer dynamics. In GCMs, differing convective heating representation could produce different MJO structural asymmetry, and thus different propagations. Diagnosis of structural asymmetry may help revealing the models’ deficiency in representing the complex three-way interaction processes, which involves various parameterized processes.


2000 ◽  
Vol 24 (4) ◽  
pp. 499-514 ◽  
Author(s):  
Richard Washington

The atmosphere is known to be forced by a variety of energy sources, including radiation and heat fluxes emanating from the boundary layer associated with sea-surface temperature anomalies and land-surface features. The atmosphere is also subject to internal variability which is essentially unforced and is thought to be a basic characteristic of fluids. Whereas much work has been done in quantifying the links between external forcing of the atmosphere and its long-term response as well as the influence of boundary layer forcing in determining organized, large-scale modes of planetary-scale circulation, less is known about the importance of internal variability or chaos in determining the evolution of weather and climate. General circulation models (GCMs) now provide for this possibility. Multiple evolutions of the climate system may be computed in GCM simulations. Where these simulations are identical except for the conditions by which the model is initialized, the degree of departure in the evolution of climate from one model run to the next corresponds precisely to the degree of internal variability or chaos present in the model atmosphere. A methodology for quantifying this chaotic forcing is considered and is applied to century-long integrations of the UK Meteorological Office model HADAM2A.


Climate ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 2
Author(s):  
Patrick Haertel

The Madden Julian Oscillation (MJO) is a large-scale convective and circulation system that propagates slowly eastward over the equatorial Indian and Western Pacific Oceans. Multiple, conflicting theories describe its growth and propagation, most involving equatorial Kelvin and/or Rossby waves. This study partitions MJO circulations into Kelvin and Rossby wave components for three sets of data: (1) a modeled linear response to an MJO-like heating; (2) a composite MJO based on atmospheric sounding data; and (3) a composite MJO based on data from a Lagrangian atmospheric model. The first dataset has a simple dynamical interpretation, the second provides a realistic view of MJO circulations, and the third occurs in a laboratory supporting controlled experiments. In all three of the datasets, the propagation of Kelvin waves is similar, suggesting that the dynamics of Kelvin wave circulations in the MJO can be captured by a system of equations linearized about a basic state of rest. In contrast, the Rossby wave component of the observed MJO’s circulation differs substantially from that in our linear model, with Rossby gyres moving eastward along with the heating and migrating poleward relative to their linear counterparts. These results support the use of a system of equations linearized about a basic state of rest for the Kelvin wave component of MJO circulation, but they question its use for the Rossby wave component.


2013 ◽  
Vol 141 (3) ◽  
pp. 1099-1117 ◽  
Author(s):  
Andrew Charles ◽  
Bertrand Timbal ◽  
Elodie Fernandez ◽  
Harry Hendon

Abstract Seasonal predictions based on coupled atmosphere–ocean general circulation models (GCMs) provide useful predictions of large-scale circulation but lack the conditioning on topography required for locally relevant prediction. In this study a statistical downscaling model based on meteorological analogs was applied to continental-scale GCM-based seasonal forecasts and high quality historical site observations to generate a set of downscaled precipitation hindcasts at 160 sites in the South Murray Darling Basin region of Australia. Large-scale fields from the Predictive Ocean–Atmosphere Model for Australia (POAMA) 1.5b GCM-based seasonal prediction system are used for analog selection. Correlation analysis indicates modest levels of predictability in the target region for the selected predictor fields. A single best-match analog was found using model sea level pressure, meridional wind, and rainfall fields, with the procedure applied to 3-month-long reforecasts, initialized on the first day of each month from 1980 to 2006, for each model day of 10 ensemble members. Assessment of the total accumulated rainfall and number of rainy days in the 3-month reforecasts shows that the downscaling procedure corrects the local climate variability with no mean effect on predictive skill, resulting in a smaller magnitude error. The amount of total rainfall and number of rain days in the downscaled output is significantly improved over the direct GCM output as measured by the difference in median and tercile thresholds between station observations and downscaled rainfall. Confidence in the downscaled output is enhanced by strong consistency between the large-scale mean of the downscaled and direct GCM precipitation.


2008 ◽  
Vol 21 (19) ◽  
pp. 4955-4973 ◽  
Author(s):  
Michael P. Jensen ◽  
Andrew M. Vogelmann ◽  
William D. Collins ◽  
Guang J. Zhang ◽  
Edward P. Luke

Abstract To aid in understanding the role that marine boundary layer (MBL) clouds play in climate and assist in improving their representations in general circulation models (GCMs), their long-term microphysical and macroscale characteristics are quantified using observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the National Aeronautics and Space Administration’s (NASA’s) Terra satellite. Six years of MODIS pixel-level cloud products are used from oceanic study regions off the west coasts of California, Peru, the Canary Islands, Angola, and Australia where these cloud types are common. Characterizations are given for their organization (macroscale structure), the associated microphysical properties, and the seasonal dependencies of their variations for scales consistent with the size of a GCM grid box (300 km × 300 km). MBL mesoscale structure is quantified using effective cloud diameter CD, which is introduced here as a simplified measure of bulk cloud organization; it is straightforward to compute and provides descriptive information beyond that offered by cloud fraction. The interrelationships of these characteristics are explored while considering the influences of the MBL state, such as the occurrence of drizzle. Several commonalities emerge for the five study regions. MBL clouds contain the best natural examples of plane-parallel clouds, but overcast clouds occur in only about 25% of the scenes, which emphasizes the importance of representing broken MBL cloud fields in climate models (that are subgrid scale). During the peak months of cloud occurrence, mesoscale organization (larger CD) increases such that the fractions of scenes characterized as “overcast” and “clumped” increase at the expense of the “scattered” scenes. Cloud liquid water path and visible optical depth usually trend strongly with CD, with the largest values occurring for scenes that are drizzling. However, considerable interregional differences exist in these trends, suggesting that different regression functionalities exist for each region. For peak versus off-peak months, the fraction of drizzling scenes (as a function of CD) are similar for California and Angola, which suggests that a single probability distribution function might be used for their drizzle occurrence in climate models. The patterns are strikingly opposite for Peru and Australia; thus, the contrasts among regions may offer a test bed for model simulations of MBL drizzle occurrence.


2015 ◽  
Vol 72 (1) ◽  
pp. 55-74 ◽  
Author(s):  
Qiang Deng ◽  
Boualem Khouider ◽  
Andrew J. Majda

Abstract The representation of the Madden–Julian oscillation (MJO) is still a challenge for numerical weather prediction and general circulation models (GCMs) because of the inadequate treatment of convection and the associated interactions across scales by the underlying cumulus parameterizations. One new promising direction is the use of the stochastic multicloud model (SMCM) that has been designed specifically to capture the missing variability due to unresolved processes of convection and their impact on the large-scale flow. The SMCM specifically models the area fractions of the three cloud types (congestus, deep, and stratiform) that characterize organized convective systems on all scales. The SMCM captures the stochastic behavior of these three cloud types via a judiciously constructed Markov birth–death process using a particle interacting lattice model. The SMCM has been successfully applied for convectively coupled waves in a simplified primitive equation model and validated against radar data of tropical precipitation. In this work, the authors use for the first time the SMCM in a GCM. The authors build on previous work of coupling the High-Order Methods Modeling Environment (HOMME) NCAR GCM to a simple multicloud model. The authors tested the new SMCM-HOMME model in the parameter regime considered previously and found that the stochastic model drastically improves the results of the deterministic model. Clear MJO-like structures with many realistic features from nature are reproduced by SMCM-HOMME in the physically relevant parameter regime including wave trains of MJOs that organize intermittently in time. Also one of the caveats of the deterministic simulation of requiring a doubling of the moisture background is not required anymore.


2009 ◽  
Vol 66 (8) ◽  
pp. 2429-2443 ◽  
Author(s):  
Tim Li ◽  
Chunhua Zhou

Abstract Numerical experiments with a 2.5-layer and a 2-level model are conducted to examine the mechanism for the planetary scale selection of the Madden–Julian oscillation (MJO). The strategy here is to examine the evolution of an initial perturbation that has a form of the equatorial Kelvin wave at zonal wavenumbers of 1 to 15. In the presence of a frictional boundary layer, the most unstable mode prefers a short wavelength under a linear heating; but with a nonlinear heating, the zonal wavenumber 1 grows fastest. This differs significantly from a model without the boundary layer, in which neither linear nor nonlinear heating leads to the long wave selection. Thus, the numerical simulations point out the crucial importance of the combined effect of the nonlinear heating and the frictional boundary layer in the MJO planetary scale selection. The cause of this scale selection under the nonlinear heating is attributed to the distinctive phase speeds between the dry Kelvin wave and the wet Kelvin–Rossby wave couplet. The faster dry Kelvin wave triggered by a convective branch may catch up and suppress another convective branch, which travels ahead of it at the phase speed of the wet Kelvin–Rossby wave couplet if the distance between the two neighboring convective branches is smaller than a critical distance (about 16 000 km). The interference between the dry Kelvin wave and the wet Kelvin–Rossby wave couplet eventually dissipates and “filters out” shorter wavelength perturbations, leading to a longwave selection. The boundary layer plays an important role in destabilizing the MJO through frictional moisture convergences and in retaining the in-phase zonal wind–pressure structure.


2007 ◽  
Vol 64 (11) ◽  
pp. 3766-3784 ◽  
Author(s):  
Philippe Lopez

Abstract This paper first reviews the current status, issues, and limitations of the parameterizations of atmospheric large-scale and convective moist processes that are used in numerical weather prediction and climate general circulation models. Both large-scale (resolved) and convective (subgrid scale) moist processes are dealt with. Then, the general question of the inclusion of diabatic processes in variational data assimilation systems is addressed. The focus is put on linearity and resolution issues, the specification of model and observation error statistics, the formulation of the control vector, and the problems specific to the assimilation of observations directly affected by clouds and precipitation.


Sign in / Sign up

Export Citation Format

Share Document