scholarly journals The Influence of the Madden–Julian Oscillation on Tropical Cyclone Activity in the Fiji Region

2010 ◽  
Vol 23 (4) ◽  
pp. 868-886 ◽  
Author(s):  
Savin S. Chand ◽  
Kevin J. E. Walsh

Abstract This study examines the modulation of tropical cyclone (TC) activity by the Madden–Julian oscillation (MJO) in the Fiji, Samoa, and Tonga regions (FST region), using Joint Typhoon Warning Center best-track cyclone data and the MJO index developed by Wheeler and Hendon. Results suggest strong MJO–TC relationships in the FST region. The TC genesis patterns are significantly altered over the FST region with approximately 5 times more cyclones forming in the active phase than in the inactive phase of the MJO. This modulation is further strengthened during El Niño periods. The large-scale environmental conditions (i.e., low-level relative vorticity, upper-level divergence, and vertical wind shear) associated with TC genesis show a distinct patterns of variability for the active and inactive MJO phases. The MJO also has a significant effect on hurricane category and combined gale and storm category cyclones in the FST region. The occurrences of both these cyclone categories are increased in the active phase of the MJO, which is associated with enhanced convective activity. The TCs in the other MJO phases where convective activity is relatively low, however, show a consistent pattern of increase in hurricane category cyclones and a concomitant decrease in gale and storm category cyclones. Finally, TC tracks in different MJO phases are also objectively described using a cluster analysis technique. Patterns seen in the clustered track regimes are well explained here in terms of 700–500-hPa mean steering flow.

2015 ◽  
Vol 54 (7) ◽  
pp. 1413-1429 ◽  
Author(s):  
Haikun Zhao ◽  
Ryuji Yoshida ◽  
G. B. Raga

AbstractThe intraseasonal variability of tropical cyclogenesis in the western North Pacific (WNP) basin is explored in this study. The relation of cyclogenesis in each of the five large-scale patterns identified in recent work by Yoshida and Ishikawa is associated with the Madden–Julian oscillation (MJO). Confirming previous results, more events of cyclogenesis are found during the active MJO phase in the WNP. Furthermore, results indicate that most of the tropical cyclogenesis is associated with the monsoon shear line large-scale pattern during the active phase. The genesis potential index (GPI) and its individual components are used to evaluate the environmental factors that most contribute toward cyclogenesis under the different phases of the MJO. GPI exhibits a large positive anomaly during the active phase of the MJO, and such an anomaly is spatially correlated with the events of cyclogenesis. The analysis of each factor indicates that low-level relative vorticity and midlevel relative humidity are the two dominant contributors to the MJO-composited GPI anomalies. The positive GPI anomalies during the active phase are partially offset by the negative contributions from vertical wind shear and potential intensity. This is valid for all five large-scale patterns. It is noteworthy that the easterly wave (EW) large-scale pattern, while exhibiting the same influence of relative vorticity and midlevel humidity contributing toward positive GPI anomalies, presents slightly more cyclogenesis events under the inactive phase of the MJO. This unexpected result suggests that other factors not included in the definition of the GPI and/or changes in environmental flows on other time scales contribute to the tropical cyclogenesis associated with the EW large-scale pattern.


2013 ◽  
Vol 70 (4) ◽  
pp. 1023-1034 ◽  
Author(s):  
Liguang Wu ◽  
Huijun Zong ◽  
Jia Liang

Abstract Large-scale monsoon gyres and the involved tropical cyclone formation over the western North Pacific have been documented in previous studies. The aim of this study is to understand how monsoon gyres affect tropical cyclone formation. An observational study is conducted on monsoon gyres during the period 2000–10, with a focus on their structures and the associated tropical cyclone formation. A total of 37 monsoon gyres are identified in May–October during 2000–10, among which 31 monsoon gyres are accompanied with the formation of 42 tropical cyclones, accounting for 19.8% of the total tropical cyclone formation. Monsoon gyres are generally located on the poleward side of the composited monsoon trough with a peak occurrence in August–October. Extending about 1000 km outward from the center at lower levels, the cyclonic circulation of the composited monsoon gyre shrinks with height and is replaced with negative relative vorticity above 200 hPa. The maximum winds of the composited monsoon gyre appear 500–800 km away from the gyre center with a magnitude of 6–10 m s−1 at 850 hPa. In agreement with previous studies, the composited monsoon gyre shows enhanced southwesterly flow and convection on the south-southeastern side. Most of the tropical cyclones associated with monsoon gyres are found to form near the centers of monsoon gyres and the northeastern end of the enhanced southwesterly flows, accompanying relatively weak vertical wind shear.


2009 ◽  
Vol 22 (14) ◽  
pp. 3877-3893 ◽  
Author(s):  
Savin S. Chand ◽  
Kevin J. E. Walsh

Abstract This study examines the variations in tropical cyclone (TC) genesis positions and their subsequent tracks for different phases of the El Niño–Southern Oscillation (ENSO) phenomenon in the Fiji, Samoa, and Tonga region (FST region) using Joint Typhoon Warning Center best-track data. Over the 36-yr period from 1970/71 to 2005/06, 122 cyclones are observed in the FST region. A large spread in the genesis positions is noted. During El Niño years, genesis is enhanced east of the date line, extending from north of Fiji to over Samoa, with the highest density centered around 10°S, 180°. During neutral years, maximum genesis occurs immediately north of Fiji with enhanced genesis south of Samoa. In La Niña years, there are fewer cyclones forming in the region than during El Niño and neutral years. During La Niña years, the genesis positions are displaced poleward of 12°S, with maximum density centered around 15°S, 170°E and south of Fiji. The cyclone tracks over the FST region are also investigated using cluster analysis. Tracks during the period 1970/71–2005/06 are conveniently described using three separate clusters, with distinct characteristics associated with different ENSO phases. Finally, the role of large-scale environmental factors affecting interannual variability of TC genesis positions and their subsequent tracks in the FST region are investigated. Favorable genesis positions are observed where large-scale environments have the following seasonal average thresholds: (i) 850-hPa cyclonic relative vorticity between −16 and −4 (×10−6 s−1), (ii) 200-hPa divergence between 2 and 8 (×10−6 s−1), and (iii) environmental vertical wind shear between 0 and 8 m s−1. The subsequent TC tracks are observed to be steered by mean 700–500-hPa winds.


2005 ◽  
Vol 20 (2) ◽  
pp. 199-211 ◽  
Author(s):  
Hui Yu ◽  
H. Joe Kwon

Abstract Using large-scale analyses, the effect of tropical cyclone–trough interaction on tropical cyclone (TC) intensity change is readdressed by studying the evolution of upper-level eddy flux convergence (EFC) of angular momentum and vertical wind shear for two TCs in the western North Pacific [Typhoons Prapiroon (2000) and Olga (1999)]. Major findings include the following: 1) In spite of decreasing SST, the cyclonic inflow associated with a midlatitude trough should have played an important role in Prapiroon’s intensification to its maximum intensity and the maintenance after recurvature through an increase in EFC. The accompanied large vertical wind shear is concentrated in a shallow layer in the upper troposphere. 2) Although Olga also recurved downstream of a midlatitude trough, its development and maintenance were not strongly influenced by the trough. A TC could maintain itself in an environment with or without upper-level eddy momentum forcing. 3) Both TCs started to decay over cold SST in a large EFC and vertical wind shear environment imposed by the trough. 4) Uncertainty of input adds difficulties in quantitative TC intensity forecasting.


Author(s):  
Edward Maru ◽  
Taiga Shibata ◽  
Kosuke Ito

This paper examines the tropical cyclone (TC) activity in Solomon Islands (SI) using the best track data from Tropical Cyclone Warning Centre Brisbane and Regional Specialized Meteorological Centre Nadi. The long-term trend analysis showed that the frequency of TCs has been decreasing in this region while average TC intensity becomes strong. Then, the datasets were classified according to the phase of Madden-Julian Oscillation (MJO) and the index of El Nino Southern Oscillation (ENSO) provided by Bureau of Meteorology. The MJO has sufficiently influenced TC activity in the SI region with more genesis occurring in phases 6-8, in which the lower outgoing longwave radiation indicates enhanced convective activity. In contrast, TC genesis occurs less frequently in phases 1, 2, and 5. As for the influence of ENSO, more TCs are generated in El Nino period. The TC genesis locations during El Nino (La Nina) period were significantly displaced to the north (south) over SI region. TCs generated during El Nino condition tended to be strong. This paper also argues the modulation in terms of seasonal climatic variability of large-scale environmental conditions such as sea surface temperature, low level relative vorticity, vertical wind shear, and upper level divergence.


2011 ◽  
Vol 139 (3) ◽  
pp. 885-894 ◽  
Author(s):  
Jianyun Gao ◽  
Tim Li

Abstract The statistical feature of occurrence of multiple tropical cyclone (MTC) events in the western North Pacific (WNP) is examined during summer (June–September) for the period of 1979–2006. The number of MTC events ranged from one to eight per year, experiencing a marked interannual variation. The spatial distance between the TCs associated with MTC events is mostly less than 3000 km, which accounts for 73% of total samples. The longest active phase of an MTC event lasts for nine days, and about 80% of the MTC events last for five days or less. A composite analysis of active and inactive MTC phases reveals that positive low-level (negative upper-level) vorticity anomalies and enhanced convection and midtropospheric relative humidity are the favorable large-scale conditions for MTC genesis. About 77% of the MTC events occurred in the region where either the atmospheric intraseasonal (25–70 day) oscillation (ISO) or biweekly (10–20 day) oscillation (BWO) is in a wet phase. The overall occurrence of the MTC events is greatly regulated by the combined large-scale impact of BWO, ISO, and the lower-frequency (90 days or longer) oscillation. On the interannual time scale, the MTC frequency is closely related to the seasonal mean anomalies of 850-hPa vorticity, outgoing longwave radiation (OLR), and 500-hPa humidity fields. The combined ISO and BWO activity is greatly strengthened (weakened) in the WNP region during the MTC active (inactive) years.


2015 ◽  
Vol 143 (7) ◽  
pp. 2459-2484 ◽  
Author(s):  
Andrew B. Penny ◽  
Patrick A. Harr ◽  
Michael M. Bell

Abstract Large uncertainty still remains in determining whether a tropical cloud cluster will develop into a tropical cyclone. During The Observing System Research and Predictability Experiment (THORPEX) Pacific Asian Regional Campaign (T-PARC)/Tropical Cyclone Structure-2008 (TCS-08) field experiment, over 50 tropical cloud clusters were monitored for development, but only 4 developed into a tropical cyclone. One nondeveloping tropical disturbance (TCS025) was closely observed for potential formation during five aircraft research missions, which provided an unprecedented set of observations pertaining to the large-scale and convective environments of a nondeveloping system. The TCS025 disturbance was comprised of episodic convection that occurred in relation to the diurnal cycle along the eastern extent of a broad low-level trough. The upper-level environment was dominated by two cyclonic cells in the tropical upper-tropospheric trough (TUTT) north of the low-level trough in which the TCS025 circulation was embedded. An in-depth examination of in situ observations revealed that the nondeveloping circulation was asymmetric and vertically misaligned, which led to larger system-relative flow on the mesoscale. Persistent environmental vertical wind shear and horizontal shearing deformation near the circulation kept the system from becoming better organized and appears to have allowed low equivalent potential temperature () air originating from one of the TUTT cells to the north (upshear) to impact the thermodynamic environment of TCS025. This in turn weakened subsequent convection that might otherwise have improved alignment and contributed to the transition of TCS025 to a tropical cyclone.


2010 ◽  
Vol 25 (6) ◽  
pp. 1780-1795 ◽  
Author(s):  
Mong-Ming Lu ◽  
Pao-Shin Chu ◽  
Yun-Ching Lin

Abstract A Poisson generalized linear regression model cast within a Bayesian framework is applied to forecast the seasonal tropical cyclone (TC) counts in the vicinity of Taiwan. The TC season considered is June–November and the data period used for model development is 1979–2007. A stepwise regression procedure is applied for predictor selection. Three large-scale climate variables, namely, relative vorticity at 850 hPa (Vor850), vertical wind shear, and sea level pressure over the western and central North Pacific from the antecedent May, are selected as predictors. Leave-one-out cross validation is performed and forecast skill is thoroughly evaluated. The skill level of the Bayesian regression model is better than what can be achieved by climatology and persistence methods. Most importantly, the Bayesian probabilistic inference can provide an uncertainty expression in the parameter estimation. Among the three predictors, Vor850 is found to be the most important because it reflects the variation of the ridge position of the westward extension of the western Pacific subtropical high. The model shows negative bias during the years with successive TCs, which are generated by easterly waves before approaching Taiwan. Recommendations for real-time operational forecast and future development are discussed.


2013 ◽  
Vol 70 (8) ◽  
pp. 2547-2565 ◽  
Author(s):  
Marie-Dominique Leroux ◽  
Matthieu Plu ◽  
David Barbary ◽  
Frank Roux ◽  
Philippe Arbogast

Abstract The rapid intensification of Tropical Cyclone (TC) Dora (2007, southwest Indian Ocean) under upper-level trough forcing is investigated. TC–trough interaction is simulated using a limited-area operational numerical weather prediction model. The interaction between the storm and the trough involves a coupled evolution of vertical wind shear and binary vortex interaction in the horizontal and vertical dimensions. The three-dimensional potential vorticity structure associated with the trough undergoes strong deformation as it approaches the storm. Potential vorticity (PV) is advected toward the tropical cyclone core over a thick layer from 200 to 500 hPa while the TC upper-level flow turns cyclonic from the continuous import of angular momentum. It is found that vortex intensification first occurs inside the eyewall and results from PV superposition in the thick aforementioned layer. The main pathway to further storm intensification is associated with secondary eyewall formation triggered by external forcing. Eddy angular momentum convergence and eddy PV fluxes are responsible for spinning up an outer eyewall over the entire troposphere, while spindown is observed within the primary eyewall. The 8-km-resolution model is able to reproduce the main features of the eyewall replacement cycle observed for TC Dora. The outer eyewall intensifies further through mean vertical advection under dynamically forced upward motion. The processes are illustrated and quantified using various diagnostics.


2008 ◽  
Vol 21 (5) ◽  
pp. 1083-1103 ◽  
Author(s):  
Hamish A. Ramsay ◽  
Lance M. Leslie ◽  
Peter J. Lamb ◽  
Michael B. Richman ◽  
Mark Leplastrier

Abstract This study investigates the role of large-scale environmental factors, notably sea surface temperature (SST), low-level relative vorticity, and deep-tropospheric vertical wind shear, in the interannual variability of November–April tropical cyclone (TC) activity in the Australian region. Extensive correlation analyses were carried out between TC frequency and intensity and the aforementioned large-scale parameters, using TC data for 1970–2006 from the official Australian TC dataset. Large correlations were found between the seasonal number of TCs and SST in the Niño-3.4 and Niño-4 regions. These correlations were greatest (−0.73) during August–October, immediately preceding the Australian TC season. The correlations remain almost unchanged for the July–September period and therefore can be viewed as potential seasonal predictors of the forthcoming TC season. In contrast, only weak correlations (<+0.37) were found with the local SST in the region north of Australia where many TCs originate; these were reduced almost to zero when the ENSO component of the SST was removed by partial correlation analysis. The annual frequency of TCs was found to be strongly correlated with 850-hPa relative vorticity and vertical shear of the zonal wind over the main genesis areas of the Australian region. Furthermore, correlations between the Niño SST and these two atmospheric parameters exhibited a strong link between the Australian region and the Niño-3.4 SST. A principal component analysis of the SST dataset revealed two main modes of Pacific Ocean SST variability that match very closely with the basinwide patterns of correlations between SST and TC frequencies. Finally, it is shown that the correlations can be increased markedly (e.g., from −0.73 to −0.80 for the August–October period) by a weighted combination of SST time series from weakly correlated regions.


Sign in / Sign up

Export Citation Format

Share Document