scholarly journals Chemistry–Climate Model Simulations of Twenty-First Century Stratospheric Climate and Circulation Changes

2010 ◽  
Vol 23 (20) ◽  
pp. 5349-5374 ◽  
Author(s):  
Neal Butchart ◽  
I. Cionni ◽  
V. Eyring ◽  
T. G. Shepherd ◽  
D. W. Waugh ◽  
...  

Abstract The response of stratospheric climate and circulation to increasing amounts of greenhouse gases (GHGs) and ozone recovery in the twenty-first century is analyzed in simulations of 11 chemistry–climate models using near-identical forcings and experimental setup. In addition to an overall global cooling of the stratosphere in the simulations (0.59 ± 0.07 K decade−1 at 10 hPa), ozone recovery causes a warming of the Southern Hemisphere polar lower stratosphere in summer with enhanced cooling above. The rate of warming correlates with the rate of ozone recovery projected by the models and, on average, changes from 0.8 to 0.48 K decade−1 at 100 hPa as the rate of recovery declines from the first to the second half of the century. In the winter northern polar lower stratosphere the increased radiative cooling from the growing abundance of GHGs is, in most models, balanced by adiabatic warming from stronger polar downwelling. In the Antarctic lower stratosphere the models simulate an increase in low temperature extremes required for polar stratospheric cloud (PSC) formation, but the positive trend is decreasing over the twenty-first century in all models. In the Arctic, none of the models simulates a statistically significant increase in Arctic PSCs throughout the twenty-first century. The subtropical jets accelerate in response to climate change and the ozone recovery produces a westward acceleration of the lower-stratospheric wind over the Antarctic during summer, though this response is sensitive to the rate of recovery projected by the models. There is a strengthening of the Brewer–Dobson circulation throughout the depth of the stratosphere, which reduces the mean age of air nearly everywhere at a rate of about 0.05 yr decade−1 in those models with this diagnostic. On average, the annual mean tropical upwelling in the lower stratosphere (∼70 hPa) increases by almost 2% decade−1, with 59% of this trend forced by the parameterized orographic gravity wave drag in the models. This is a consequence of the eastward acceleration of the subtropical jets, which increases the upward flux of (parameterized) momentum reaching the lower stratosphere in these latitudes.

2018 ◽  
Vol 31 (16) ◽  
pp. 6353-6370 ◽  
Author(s):  
Mark England ◽  
Lorenzo Polvani ◽  
Lantao Sun

Abstract Models project that Antarctic sea ice area will decline considerably by the end of this century, but the consequences remain largely unexplored. Here, the atmospheric response to future sea ice loss in the Antarctic is investigated, and contrasted to the Arctic case, using the Community Earth Systems Model (CESM) Whole Atmosphere Coupled Climate Model (WACCM). Time-slice model runs with historic sea ice concentrations are compared to runs with future concentrations, from the late twenty-first century, in each hemisphere separately. As for the Arctic, results indicate that Antarctic sea ice loss will act to shift the tropospheric jet equatorward, an internal negative feedback to the poleward shift associated with increased greenhouse gases. Also, the tropospheric response to Antarctic sea ice loss is found to be somewhat weaker, more vertically confined, and less seasonally varying than in the case of Arctic sea ice loss. The stratospheric response to Antarctic sea ice loss is relatively weak compared to the Arctic case, although it is here demonstrated that the latter is still small relative to internal variability. In contrast to the Arctic case, the response of the ozone layer is found to be positive (up to 5 Dobson units): interestingly, it is present in all seasons except austral spring. Finally, while the response of surface temperature and precipitation is limited to the southern high latitudes, it is nonetheless unable to impact the interior of the Antarctic continent, suggesting a minor role of sea ice loss on recent Antarctic temperature trends.


2013 ◽  
Vol 5 (1) ◽  
pp. 233-251 ◽  
Author(s):  
Donald R. Rothwell

Abstract The polar regions are increasingly coming to the forefront of global affairs in ways that are beginning to approach the prominence given to the polar regions during the ‘heroic era’ of exploration at the beginning of the twentieth century. This contemporary focus is, however, very much upon governance and the capacity of the existing and future legal frameworks to govern the Antarctic and Arctic effectively. This article revisits foundational research undertaken in 1992–1993 and reassesses the impact of the polar regions upon the development of international law. Particular attention is given to environmental management, living and nonliving resource management, the regulation and management of maritime areas, and governance mechanisms and frameworks. The article seeks to critically assess whether the existing legal frameworks that operate in Antarctica and the Arctic are capable of dealing with their increasing globalisation, or whether there will be a need for new legal and governance regimes to be developed to address twenty-first century challenges.


2013 ◽  
Vol 26 (15) ◽  
pp. 5419-5433 ◽  
Author(s):  
Andrew R. Friedman ◽  
Yen-Ting Hwang ◽  
John C. H. Chiang ◽  
Dargan M. W. Frierson

Abstract The temperature contrast between the Northern and Southern Hemispheres—the interhemispheric temperature asymmetry (ITA)—is an emerging indicator of global climate change, potentially relevant to the Hadley circulation and tropical rainfall. The authors examine the ITA in historical observations and in phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5) simulations. The observed annual-mean ITA (north minus south) has varied within a 0.8°C range and features a significant positive trend since 1980. The CMIP multimodel ensembles simulate this trend, with a stronger and more realistic signal in CMIP5. Both ensembles project a continued increase in the ITA over the twenty-first century, well outside the twentieth-century range. The authors mainly attribute this increase to the uneven spatial impacts of greenhouse forcing, which result in amplified warming in the Arctic and northern landmasses. The CMIP5 specific-forcing simulations indicate that, before 1980, the greenhouse-forced ITA trend was primarily countered by anthropogenic aerosols. The authors also identify an abrupt decrease in the observed ITA in the late 1960s, which is generally not present in the CMIP simulations; it suggests that the observed drop was caused by internal variability. The difference in the strengths of the northern and southern Hadley cells covaries with the ITA in the CMIP5 simulations, in accordance with previous findings; the authors also find an association with the hemispheric asymmetry in tropical rainfall. These relationships imply a northward shift in tropical rainfall with increasing ITA in the twenty-first century, though this result is difficult to separate from the response to global-mean temperature change.


Author(s):  
Emily Black ◽  
David J. Brayshaw ◽  
Claire M. C. Rambeau

Anthropogenic changes in precipitation pose a serious threat to society—particularly in regions such as the Middle East that already face serious water shortages. However, climate model projections of regional precipitation remain highly uncertain. Moreover, standard resolution climate models have particular difficulty representing precipitation in the Middle East, which is modulated by complex topography, inland water bodies and proximity to the Mediterranean Sea. Here we compare precipitation changes over the twenty-first century against both millennial variability during the Holocene and interannual variability in the present day. In order to assess the climate model and to make consistent comparisons, this study uses new regional climate model simulations of the past, present and future in conjunction with proxy and historical observations. We show that the pattern of precipitation change within Europe and the Middle East projected by the end of the twenty-first century has some similarities to that which occurred during the Holocene. In both cases, a poleward shift of the North Atlantic storm track and a weakening of the Mediterranean storm track appear to cause decreased winter rainfall in southern Europe and the Middle East and increased rainfall further north. In contrast, on an interannual time scale, anomalously dry seasons in the Middle East are associated with a strengthening and focusing of the storm track in the north Mediterranean and hence wet conditions throughout southern Europe.


2018 ◽  
Vol 31 (20) ◽  
pp. 8281-8303 ◽  
Author(s):  
Kieran Bhatia ◽  
Gabriel Vecchi ◽  
Hiroyuki Murakami ◽  
Seth Underwood ◽  
James Kossin

As one of the first global coupled climate models to simulate and predict category 4 and 5 (Saffir–Simpson scale) tropical cyclones (TCs) and their interannual variations, the High-Resolution Forecast-Oriented Low Ocean Resolution (HiFLOR) model at the Geophysical Fluid Dynamics Laboratory (GFDL) represents a novel source of insight on how the entire TC intensification distribution could be transformed because of climate change. In this study, three 70-yr HiFLOR experiments are performed to identify the effects of climate change on TC intensity and intensification. For each of the experiments, sea surface temperature (SST) is nudged to different climatological targets and atmospheric radiative forcing is specified, allowing us to explore the sensitivity of TCs to these conditions. First, a control experiment, which uses prescribed climatological ocean and radiative forcing based on observations during the years 1986–2005, is compared to two observational records and evaluated for its ability to capture the mean TC behavior during these years. The simulated intensification distributions as well as the percentage of TCs that become major hurricanes show similarities with observations. The control experiment is then compared to two twenty-first-century experiments, in which the climatological SSTs from the control experiment are perturbed by multimodel projected SST anomalies and atmospheric radiative forcing from either 2016–35 or 2081–2100 (RCP4.5 scenario). The frequency, intensity, and intensification distribution of TCs all shift to higher values as the twenty-first century progresses. HiFLOR’s unique response to climate change and fidelity in simulating the present climate lays the groundwork for future studies involving models of this type.


2006 ◽  
Vol 6 (10) ◽  
pp. 2895-2910 ◽  
Author(s):  
S. E. Strahan ◽  
B. C. Polansky

Abstract. Offline chemistry and transport models (CTMs) are versatile tools for studying composition and climate issues requiring multi-decadal simulations. They are computationally fast compared to coupled chemistry climate models, making them well-suited for integrating sensitivity experiments necessary for understanding model performance and interpreting results. The archived meteorological fields used by CTMs can be implemented with lower horizontal or vertical resolution than the original meteorological fields in order to shorten integration time, but the effects of these shortcuts on transport processes must be understood if the CTM is to have credibility. In this paper we present a series of sensitivity experiments on a CTM using the Lin and Rood advection scheme, each differing from another by a single feature of the wind field implementation. Transport effects arising from changes in resolution and model lid height are evaluated using process-oriented diagnostics that intercompare CH4, O3, and age tracer carried in the simulations. Some of the diagnostics used are derived from observations and are shown as a reality check for the model. Processes evaluated include tropical ascent, tropical-midlatitude exchange, poleward circulation in the upper stratosphere, and the development of the Antarctic vortex. We find that faithful representation of stratospheric transport in this CTM is possible with a full mesosphere, ~1 km resolution in the lower stratosphere, and relatively low vertical resolution (>4 km spacing) in the middle stratosphere and above, but lowering the lid from the upper to lower mesosphere leads to less realistic constituent distributions in the upper stratosphere. Ultimately, this affects the polar lower stratosphere, but the effects are greater for the Antarctic than the Arctic. The fidelity of lower stratospheric transport requires realistic tropical and high latitude mixing barriers which are produced at 2°×2.5°, but not lower resolution. At 2°×2.5° resolution, the CTM produces a vortex capable of isolating perturbed chemistry (e.g. high Cly and low NOy) required for simulating polar ozone loss.


2007 ◽  
Vol 20 (4) ◽  
pp. 609-632 ◽  
Author(s):  
William L. Chapman ◽  
John E. Walsh

Abstract Simulations of Arctic surface air temperature and sea level pressure by 14 global climate models used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change are synthesized in an analysis of biases and trends. Simulated composite GCM surface air temperatures for 1981–2000 are generally 1°–2°C colder than corresponding observations with the exception of a cold bias maximum of 6°–8°C in the Barents Sea. The Barents Sea bias, most prominent in winter and spring, occurs in 12 of the 14 GCMs and corresponds to a region of oversimulated sea ice. All models project a twenty-first-century warming that is largest in the autumn and winter, although the rates of the projected warming vary considerably among the models. The across-model and across-scenario uncertainties in the projected temperatures are comparable through the first half of the twenty-first century, but increases in variability associated with the choice of scenario begin to outpace increases in across-model variability by about the year 2070. By the end of the twenty-first century, the cross-scenario variability is about 50% greater than the across-model variability. The biases of sea level pressure are smaller than in the previous generation of global climate models, although the models still show a positive bias of sea level pressure in the Eurasian sector of the Arctic Ocean, surrounded by an area of negative pressure biases. This bias is consistent with an inability of the North Atlantic storm track to penetrate the Eurasian portion of the Arctic Ocean. The changes of sea level pressure projected for the twenty-first century are negative over essentially the entire Arctic. The most significant decreases of pressure are projected for the Bering Strait region, primarily in autumn and winter.


2011 ◽  
Vol 68 (6) ◽  
pp. 1214-1233 ◽  
Author(s):  
Hella Garny ◽  
Martin Dameris ◽  
William Randel ◽  
Greg E. Bodeker ◽  
Rudolf Deckert

Abstract Drivers of upwelling in the tropical lower stratosphere are investigated using the E39C-A chemistry–climate model. The climatological annual cycle in upwelling and its wave forcing are compared to the interim ECMWF Re-Analysis (ERA-Interim). The strength in tropical upwelling and its annual cycle can be largely explained by local resolved wave forcing. The climatological mean forcing is due to both stationary planetary-scale waves that originate in the tropics and extratropical transient synoptic-scale waves that are refracted equatorward. Increases in atmospheric greenhouse gas (GHG) concentrations to 2050 force a year-round positive trend in tropical upwelling, which maximizes in the lowermost stratosphere. Tropical ascent is balanced by downwelling between 20° and 40°. Strengthening of tropical upwelling can be explained by stronger local forcing by resolved wave flux convergence, which is driven in turn by processes initiated by increases in tropical sea surface temperatures (SSTs). Higher tropical SSTs cause a strengthening of the subtropical jets and modification of deep convection affecting latent heat release. While the former can modify wave propagation and dissipation, the latter affects tropical wave generation. The dominant mechanism leading to enhanced vertical wave propagation into the lower stratosphere is an upward shift of the easterly shear zone due to the strengthening and upward shift of the subtropical jets.


Author(s):  
Marika M. Holland ◽  
Laura Landrum

We use a large ensemble of simulations from the Community Earth System Model to quantify simulated changes in the twentieth and twenty-first century Arctic surface shortwave heating associated with changing incoming solar radiation and changing ice conditions. For increases in shortwave absorption associated with albedo reductions, the relative influence of changing sea ice surface properties and changing sea ice areal coverage is assessed. Changes in the surface sea ice properties are associated with an earlier melt season onset, a longer snow-free season and enhanced surface ponding. Because many of these changes occur during peak solar insolation, they have a considerable influence on Arctic surface shortwave heating that is comparable to the influence of ice area loss in the early twenty-first century. As ice area loss continues through the twenty-first century, it overwhelms the influence of changes in the sea ice surface state, and is responsible for a majority of the net shortwave increases by the mid-twenty-first century. A comparison with the Arctic surface albedo and shortwave heating in CMIP5 models indicates a large spread in projected twenty-first century change. This is in part related to different ice loss rates among the models and different representations of the late twentieth century ice albedo and associated sea ice surface state.


Sign in / Sign up

Export Citation Format

Share Document