scholarly journals Influence of the Meridional Shifts of the Kuroshio and the Oyashio Extensions on the Atmospheric Circulation

2011 ◽  
Vol 24 (3) ◽  
pp. 762-777 ◽  
Author(s):  
Claude Frankignoul ◽  
Nathalie Sennéchael ◽  
Young-Oh Kwon ◽  
Michael A. Alexander

Abstract The meridional shifts of the Oyashio Extension (OE) and of the Kuroshio Extension (KE), as derived from high-resolution monthly sea surface temperature (SST) anomalies in 1982–2008 and historical temperature profiles in 1979–2007, respectively, are shown based on lagged regression analysis to significantly influence the large-scale atmospheric circulation. The signals are independent from the ENSO teleconnections, which were removed by seasonally varying, asymmetric regression onto the first three principal components of the tropical Pacific SST anomalies. The response to the meridional shifts of the OE front is equivalent barotropic and broadly resembles the North Pacific Oscillation/western Pacific pattern in a positive phase for a northward frontal displacement. The response may reach 35 m at 250 hPa for a typical OE shift, a strong sensitivity since the associated SST anomaly is 0.5 K. However, the amplitude, but not the pattern or statistical significance, strongly depends on the lag and an assumed 2-month atmospheric response time. The response is stronger during fall and winter and when the front is displaced southward. The response to the northward KE shifts primarily consists of a high centered in the northwestern North Pacific and hemispheric teleconnections. The response is also equivalent barotropic, except near Kamchatka, where it tilts slightly westward with height. The typical amplitude is half as large as that associated with OE shifts.

2017 ◽  
Vol 30 (5) ◽  
pp. 1861-1880 ◽  
Author(s):  
Xiaohui Ma ◽  
Ping Chang ◽  
R. Saravanan ◽  
Raffaele Montuoro ◽  
Hisashi Nakamura ◽  
...  

Abstract Local and remote atmospheric responses to mesoscale SST anomalies associated with the oceanic front and eddies in the Kuroshio Extension region (KER) are studied using high- (27 km) and low-resolution (162 km) regional climate model simulations in the North Pacific. In the high-resolution simulations, removal of mesoscale SST anomalies in the KER leads to not only a local reduction in cyclogenesis but also a remote large-scale equivalent barotropic response with a southward shift of the downstream storm track and jet stream in the eastern North Pacific. In the low-resolution simulations, no such significant remote response is found when mesoscale SST anomalies are removed. The difference between the high- and low-resolution model simulated atmospheric responses is attributed to the effect of mesoscale SST variability on cyclogenesis through moist baroclinic instability. It is only when the model has sufficient resolution to resolve small-scale diabatic heating that the full effect of mesoscale SST forcing on the storm track can be correctly simulated.


2007 ◽  
Vol 20 (3) ◽  
pp. 592-606 ◽  
Author(s):  
Claude Frankignoul ◽  
Nathalie Sennéchael

Abstract A lagged maximum covariance analysis (MCA) of monthly anomaly data from the NCEP–NCAR reanalysis shows significant relations between the large-scale atmospheric circulation in two seasons and prior North Pacific sea surface temperature (SST) anomalies, independent from the teleconnections associated with the ENSO phenomenon. Regression analysis based on the SST anomaly centers of action confirms these findings. In late summer, a hemispheric atmospheric signal that is primarily equivalent barotropic, except over the western subtropical Pacific, is significantly correlated with an SST anomaly mode up to at least 5 months earlier. Although the relation is most significant in the upper troposphere, significant temperature anomalies are found in the lower troposphere over North America, the North Atlantic, Europe, and Asia. The SST anomaly is largest in the Kuroshio Extension region and along the subtropical frontal zone, resembling the main mode of North Pacific SST anomaly variability in late winter and spring, and it is itself driven by the atmosphere. The predictability of the atmospheric signal, as estimated from cross-validated correlation, is highest when SST leads by 4 months because the SST anomaly pattern is more dominant in the spring than in the summer. In late fall and early winter, a signal resembling the Pacific–North American (PNA) pattern is found to be correlated with a quadripolar SST anomaly during summer, up to 4 months earlier, with comparable statistical significance throughout the troposphere. The SST anomaly changes shape and propagates eastward, and by early winter it resembles the SST anomaly that is generated by the PNA pattern. It is argued that this results via heat flux forcing and meridional Ekman advection from an active coupling between the SST and the PNA pattern that takes place throughout the fall. Correspondingly, the predictability of the PNA-like signal is highest when SST leads by 2 months. In late summer, the maximum atmospheric perturbation at 250 mb reaches 35 m K−1 in the MCA and 20 m K−1 in the regressions. In early winter, the maximum atmospheric perturbation at 250 mb ranges between 70 m K−1 in the MCA and about 35 m K−1 in the regressions. This suggests that North Pacific SST anomalies have a substantial impact on the Northern Hemisphere climate. The back interaction of the atmospheric response onto the ocean is also discussed.


2009 ◽  
Vol 22 (12) ◽  
pp. 3177-3192 ◽  
Author(s):  
Terrence M. Joyce ◽  
Young-Oh Kwon ◽  
Lisan Yu

Abstract Coherent, large-scale shifts in the paths of the Gulf Stream (GS) and the Kuroshio Extension (KE) occur on interannual to decadal time scales. Attention has usually been drawn to causes for these shifts in the overlying atmosphere, with some built-in delay of up to a few years resulting from propagation of wind-forced variability within the ocean. However, these shifts in the latitudes of separated western boundary currents can cause substantial changes in SST, which may influence the synoptic atmospheric variability with little or no time delay. Various measures of wintertime atmospheric variability in the synoptic band (2–8 days) are examined using a relatively new dataset for air–sea exchange [Objectively Analyzed Air–Sea Fluxes (OAFlux)] and subsurface temperature indices of the Gulf Stream and Kuroshio path that are insulated from direct air–sea exchange, and therefore are preferable to SST. Significant changes are found in the atmospheric variability following changes in the paths of these currents, sometimes in a local fashion such as meridional shifts in measures of local storm tracks, and sometimes in nonlocal, broad regions coincident with and downstream of the oceanic forcing. Differences between the North Pacific (KE) and North Atlantic (GS) may be partly related to the more zonal orientation of the KE and the stronger SST signals of the GS, but could also be due to differences in mean storm-track characteristics over the North Pacific and North Atlantic.


2011 ◽  
Vol 41 (4) ◽  
pp. 666-681 ◽  
Author(s):  
Eitarou Oka ◽  
Toshio Suga ◽  
Chiho Sukigara ◽  
Katsuya Toyama ◽  
Keishi Shimada ◽  
...  

Abstract Hydrographic data obtained by high-resolution shipboard observations and Argo profiling floats have been analyzed to study the mesoscale structure and circulation of the North Pacific Subtropical Mode Water (STMW). The float data show that in the late winter of 2008, STMW having a temperature of approximately 18.8°, 17.7°, and 16.6°C formed west of 140°E, at 140°–150°E, and east of 150°E, respectively, in the recirculation gyre south of the Kuroshio Extension. After spring, the newly formed STMW gradually shift southward, decreasing in thickness. Simultaneously, the STMWs of 16.6° and 17.7°C are gradually stirred and then mixed in terms of properties. In late fall, they seem to be integrated to form a single group of STMWs having a temperature centered at 17.2°C. Such STMW circulation in 2008 is much more turbulent than that in 2006, which was investigated in a previous study. The difference between the two years is attributed to the more variable state of the Kuroshio Extension in 2008, associated with stronger eddy activities in the STMW formation region, which enhance the eddy transport of STMW. High-resolution shipboard observations were carried out southeast of Japan at 141°–147°E in the early fall of 2008. To the south of the Kuroshio Extension, STMW exists as a sequence of patches with a horizontal scale of 100–200 km, whose thick portions correspond well to the mesoscale deepening of the permanent pycnocline. The western (eastern) hydrographic sections are occupied mostly by the 17.7°C (16.6°C) STMW, within which the 16.6°C (17.7°C) STMW exists locally, mostly at locations where both the permanent pycnocline depth and the STMW thickness are maximum. This structure implies that the STMW patches are transported away from their respective formation sites, corresponding to a shift in the mesoscale anticyclonic circulations south of the Kuroshio Extension. Furthermore, 20%–30% of the observed STMW pycnostads have two or three potential vorticity minima, mostly near temperatures of 16.6° and 17.7°C. The authors presume that such a structure formed as a result of the interleaving of the 16.6° and 17.7°C STMWs after they are stirred by mesoscale circulations, following which they are vertically mixed to form the 17.2°C STMW observed in late fall. These results indicate the importance of horizontal processes in destroying the vertically uniform structure of STMW after spring, particularly when the Kuroshio Extension is in a variable state.


2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Yuichiro Kumamoto ◽  
Michio Aoyama ◽  
Yasunori Hamajima ◽  
Tatsuo Aono ◽  
Shinya Kouketsu ◽  
...  

2015 ◽  
Vol 28 (12) ◽  
pp. 4950-4970 ◽  
Author(s):  
Xiaohui Ma ◽  
Ping Chang ◽  
R. Saravanan ◽  
Dexing Wu ◽  
Xiaopei Lin ◽  
...  

Abstract Boreal winter (November–March) extreme flux events in the Kuroshio Extension region (KER) of the northwestern Pacific and the Gulf Stream region (GSR) of the northwestern Atlantic are analyzed and compared, based on NCEP Climate Forecast System Reanalysis (CFSR), NCEP–NCAR reanalysis, and NOAA Twentieth Century Reanalysis data, as well as the observationally derived OAFlux dataset. These extreme flux events, most of which last less than 3 days, are characterized by cold air outbreaks (CAOs) with an anomalous northerly wind that brings cold and dry air from the Eurasian and North American continents to the KER and GSR, respectively. A close relationship between the extreme flux events over KER (GSR) and the Aleutian low pattern (ALP) [east Atlantic pattern (EAP)] is found with more frequent occurrence of the extreme flux events during a positive ALP (EAP) phase and vice versa. A further lag-composite analysis suggests that the ALP (EAP) is associated with accumulated effects of the synoptic winter storms accompanied by the extreme flux events and shows that the event-day storms tend to have a preferred southeastward propagation path over the North Pacific (Atlantic), potentially contributing to the southward shift of the storm track over the eastern North Pacific (Atlantic) basin during the ALP (EAP) positive phase. Finally, lag-regression analyses indicate a potential positive influence of sea surface temperature (SST) anomalies along the KER (GSR) on the development of the extreme flux events in the North Pacific (Atlantic).


2007 ◽  
Vol 20 (6) ◽  
pp. 981-992 ◽  
Author(s):  
Michael Notaro ◽  
Zhengyu Liu

Abstract The authors demonstrate that variability in vegetation cover can potentially influence oceanic variability through the atmospheric bridge. Experiments aimed at isolating the impact of variability in forest cover along the poleward side of the Asian boreal forest on North Pacific SSTs are performed using the fully coupled model, Fast Ocean Atmosphere Model–Lund Potsdam Jena (FOAM-LPJ), with dynamic atmosphere, ocean, and vegetation. The northern edge of the simulated Asian boreal forest is characterized by substantial variability in annual forest cover, with an east–west dipole pattern marking its first EOF mode. Simulations in which vegetation cover is allowed to vary over north/central Russia exhibit statistically significant greater SST variance over the Kuroshio Extension. Anomalously high forest cover over North Asia supports a lower surface albedo with higher temperatures and lower sea level pressure, leading to a reduction in cold advection into northern China and in turn a decrease in cold air transport into the Kuroshio Extension region. Variability in the large-scale circulation pattern is indirectly impacted by the aforementioned vegetation feedback, including the enhancement in upper-level jet wind variability along the north–south flanks of the East Asian jet stream.


2014 ◽  
Vol 27 (11) ◽  
pp. 3889-3903 ◽  
Author(s):  
Satoru Okajima ◽  
Hisashi Nakamura ◽  
Kazuaki Nishii ◽  
Takafumi Miyasaka ◽  
Akira Kuwano-Yoshida

Abstract Sets of atmospheric general circulation model (AGCM) experiments are conducted to assess the importance of prominent positive anomalies in sea surface temperature (SST) observed over the midlatitude North Pacific in forcing a persistent basin-scale anticyclonic circulation anomaly and its downstream influence in 2011 summer and autumn. The anticyclonic anomaly observed in October is well reproduced as a robust response of an AGCM forced only with the warm SST anomaly associated with the poleward-shifted oceanic frontal zone in the midlatitude Pacific. The equivalent barotropic anticyclonic anomaly over the North Pacific is maintained under strong transient eddy feedback forcing associated with the poleward-deflected storm track. As the downstream influence of the anomaly, abnormal warmth and dryness observed over the northern United States and southern Canada in October are also reproduced to some extent. The corresponding AGCM response over the North Pacific to the tropical SST anomalies is similar but substantially weaker and less robust, suggesting the primary importance of the prominent midlatitude SST anomaly in forcing the large-scale atmospheric anomalies observed in October 2011. In contrast, the model reproduction of the atmospheric anomalies observed in summer was unsuccessful. This appears to arise from the fact that, unlike in October, the midlatitude SST anomalies accompanied reduction of heat and moisture release from the ocean, indicative of the atmospheric thermodynamic forcing on the SST anomalies. Furthermore, the distinct seasonality in the AGCM responses to the warm SST anomalies may also be contributed to by the seasonality of background westerlies and storm track.


Radiocarbon ◽  
2019 ◽  
Vol 61 (5) ◽  
pp. 1367-1375 ◽  
Author(s):  
T Aramaki ◽  
S Nakaoka ◽  
Y Terao ◽  
S Kushibashi ◽  
T Kobayashi ◽  
...  

ABSTRACTSurface radiocarbon (Δ14C) in the North Pacific has been monitored using a commercial volunteer observation ship since the early 2000s. Here we report the temporal and spatial variations in Δ14C in the summer surface water when the surface ocean is vertically stratified over a 13-yr period, 2004–2016. The long-term Δ14C decreasing trend after the late 1970s in the subtropical region has continued to the present and the rate of decrease of the Kuroshio and Kuroshio Extension, North Pacific and California current areas is calculated to be –3.3, –5.2 and –3.3 ‰/yr, respectively. After 2012 the Δ14C of the Kuroshio and Kuroshio Extension area, however, has remained at an approximately constant value of around 50‰. The result may indicate that subtropical surface Δ14C in the western North Pacific has reached an equilibrium with atmospheric Δ14CO2. The Δ14C in the subarctic region is markedly lower than values in the subtropical region and it seems that the decreasing tendency of surface Δ14C has changed to an increasing tendency after 2010. The results may indicate that bomb-produced 14C, which has accumulated below the mixed layer in the past few decades, has been entrained into the surface layer by deep convection.


2003 ◽  
Vol 33 (12) ◽  
pp. 2465-2482 ◽  
Author(s):  
Bo Qiu

Abstract A forcing mechanism is sought for the large-scale circulation changes in the Kuroshio Extension region of the western North Pacific Ocean as inferred by TOPEX/Poseidon sea surface height (SSH) data. The low-frequency signal of the Kuroshio Extension over the last decade was characterized by a modulation in its zonal mean flow intensity: the mean Kuroshio Extension jet weakened progressively from 1993 to 1996 and this trend reversed after 1997. The ability to simulate the major trends in the observed SSH signals with linear vorticity dynamics leads the authors to conclude that the modulation in the zonal mean jet was remotely forced by wind stress curl anomalies in the eastern North Pacific Ocean related to the Pacific decadal oscillations (PDOs). To be specific, the weakening (strengthening) trend in 1993–96 (1997–2001) was caused by westward expansions of negative (positive) SSH anomalies south of the Kuroshio Extension and positive (negative) SSH anomalies north of the Kuroshio Extension. Emergence of oppositely signed SSH anomalies on the two sides of the Kuroshio Extension jet is due to the different propagating speeds of the baroclinic Rossby waves, which carry the wind-induced SSH anomalies generated in the eastern North Pacific at different phases of the PDOs. Hindcasting the Kuroshio Extension jet strength over the last 45 years reveals that the jet modulation has a dominant timescale of ∼12 yr. Given the location of the Kuroshio Extension jet relative to the maximum atmospheric forcing, it is found that this dominant timescale is consistent with the preferred timescale under a stochastic white-noise atmospheric forcing. It is hypothesized that this connection between the Kuroshio Extension strength and the latitudinally dependent baroclinic adjustment contributes to an increase in variance and persistence of the North Pacific midlatitude coupled system on the decadal timescale.


Sign in / Sign up

Export Citation Format

Share Document