scholarly journals Eddy–Mean Flow Interaction in the Kuroshio Extension Region

2011 ◽  
Vol 41 (6) ◽  
pp. 1182-1208 ◽  
Author(s):  
Stephanie Waterman ◽  
Nelson G. Hogg ◽  
Steven R. Jayne

Abstract The authors use data collected by a line of tall current meter moorings deployed across the axis of the Kuroshio Extension (KE) jet at the location of maximum time-mean eddy kinetic energy to characterize the mean jet structure, the eddy variability, and the nature of eddy–mean flow interactions observed during the Kuroshio Extension System Study (KESS). A picture of the 2-yr record mean jet structure is presented in both geographical and stream coordinates, revealing important contrasts in jet strength, width, vertical structure, and flanking recirculation structure. Eddy variability observed is discussed in the context of some of its various sources: jet meandering, rings, waves, and jet instability. Finally, various scenarios for eddy–mean flow interaction consistent with the observations are explored. It is shown that the observed cross-jet distributions of Reynolds stresses at the KESS location are consistent with wave radiation away from the jet, with the sense of the eddy feedback effect on the mean consistent with eddy driving of the observed recirculations. The authors consider these results in the context of a broader description of eddy–mean flow interactions in the larger KE region using KESS data in combination with in situ measurements from past programs in the region and satellite altimetry. This demonstrates important consistencies in the along-stream development of time-mean and eddy properties in the KE with features of an idealized model of a western boundary current (WBC) jet used to understand the nature and importance of eddy–mean flow interactions in WBC jet systems.

2013 ◽  
Vol 43 (8) ◽  
pp. 1666-1690 ◽  
Author(s):  
Stephanie Waterman ◽  
Brian J. Hoskins

Abstract This manuscript revisits a study of eddy–mean flow interactions in an idealized model of a western boundary current extension jet using properties of the horizontal velocity correlation tensor to diagnose characteristics of average eddy shape, orientation, propagation, and mean flow feedback. These eddy characteristics are then used to provide a new description of the eddy–mean flow interactions observed in terms of different ingredients of the eddy motion. The diagnostics show patterns in average eddy shape, orientation, and propagation that are consistent with the signatures of jet instability in the upstream region and wave radiation in the downstream region. Together they give a feedback onto the mean flow that gives the downstream character of the jet and drives the jet's recirculation gyres. A breakdown of the eddy forcing into contributions from individual terms confirms the expected role of cross-jet gradients in meridional eddy tilt in stabilizing the jet to its barotropic instability; however, it also reveals important roles played by the along-jet evolution of eddy zonal–meridional elongation. It is the mean flow forcing derived from these patterns that acts to strengthen and extend the jet downstream and forces the time-mean recirculation gyres. This understanding of the dependence of mean flow forcing on eddy structural properties suggests that failure to adequately resolve eddy elongation could underlie the weakened jet strength, extent, and changed recirculation structure seen in this idealized model for reduced spatial resolutions. Further, it may suggest new ideas for the parameterization of this forcing.


2019 ◽  
Vol 49 (3) ◽  
pp. 789-810 ◽  
Author(s):  
Xiaomei Yan ◽  
Dujuan Kang ◽  
Enrique N. Curchitser ◽  
Chongguang Pang

AbstractThe energetics of eddy–mean flow interactions along two western boundary currents of the North Pacific, the Kuroshio and Ryukyu Currents, are systematically investigated using 22 years of numerical data from the Ocean General Circulation Model for the Earth Simulator (OFES). For the time-mean and time-varying flow fields, all the energy components and conversions exhibit inhomogeneous spatial distributions. In the two currents, complex cross-stream and along-stream variations are seen in the eddy–mean flow energy conversions. East of Taiwan, the kinetic energy is mainly transferred from the mean flow to the eddy field through barotropic instability, whereas the baroclinic energy conversions form a meridional dipole structure caused by the topographic constraint. In the northern area, particularly, the eddy field drains 2.25 × 108 W of kinetic energy and releases 2.82 × 108 W of available potential energy when interacting with the mean flow, indicating that mesoscale eddies impinging on the Kuroshio decay with baroclinic inverse energy cascades. In the Ryukyu Current, inverse energy conversions from the eddy field to the mean flow also dominate the power transfer in the subsurface layer. The eddy field transfers 0.16 × 108 W of kinetic energy and 1.89 × 108 W of available potential energy to the mean flow, suggesting that meososcale eddies play an important role in maintaining the velocity and hydrographic structure of the current. In other areas, both barotropic and baroclinic instabilities contribute to the generation of eddy kinetic energy with the latter one providing more than 3 times as much power as the former one.


2015 ◽  
Vol 45 (5) ◽  
pp. 1356-1375 ◽  
Author(s):  
Andrew S. Delman ◽  
Julie L. McClean ◽  
Janet Sprintall ◽  
Lynne D. Talley ◽  
Elena Yulaeva ◽  
...  

AbstractEddy–mean flow interactions along the Kuroshio Extension (KE) jet are investigated using a vorticity budget of a high-resolution ocean model simulation, averaged over a 13-yr period. The simulation explicitly resolves mesoscale eddies in the KE and is forced with air–sea fluxes representing the years 1995–2007. A mean-eddy decomposition in a jet-following coordinate system removes the variability of the jet path from the eddy components of velocity; thus, eddy kinetic energy in the jet reference frame is substantially lower than in geographic coordinates and exhibits a cross-jet asymmetry that is consistent with the baroclinic instability criterion of the long-term mean field. The vorticity budget is computed in both geographic (i.e., Eulerian) and jet reference frames; the jet frame budget reveals several patterns of eddy forcing that are largely attributed to varicose modes of variability. Eddies tend to diffuse the relative vorticity minima/maxima that flank the jet, removing momentum from the fast-moving jet core and reinforcing the quasi-permanent meridional meanders in the mean jet. A pattern associated with the vertical stretching of relative vorticity in eddies indicates a deceleration (acceleration) of the jet coincident with northward (southward) quasi-permanent meanders. Eddy relative vorticity advection outside of the eastward jet core is balanced mostly by vertical stretching of the mean flow, which through baroclinic adjustment helps to drive the flanking recirculation gyres. The jet frame vorticity budget presents a well-defined picture of eddy activity, illustrating along-jet variations in eddy–mean flow interaction that may have implications for the jet’s dynamics and cross-frontal tracer fluxes.


The dynamics of wave propagation and wave transport are reviewed for vertically propagating, forced, planetary scale waves in the middle atmosphere. Such waves can be divided into two major classes: extratropical planetary waves and equatorial waves. The most important waves of the former class are quasi-stationary Rossby modes of zonal wave numbers 1 and 2 (1 or 2 waves around a latitude circle), which propagate vertically only during the w inter season when the m ean winds are westerly. These modes transport heat and ozone towards the poles, thus maintaining the mean temperature above its radiative equilibrium value in high latitudes and producing the high latitude ozone maximum . It is shown that these wave transport processes depend on wave transience and wave dam ping. The precise form of this dependency is illustrated for transport of a strongly stratified tracer by small amplitude planetary waves. The observed equatorial wave modes are of two types: an eastward propagating Kelvin m ode and a westward propagating mixed Rossby—gravity mode. These modes are therm ally damped in the stratosphere where they interact with the mean flow to produce eastward and westward accelerations, respectively. It is shown tha t in the absence of mechanical dissipation this wave—mean flow interaction is caused by the vertical divergence of a wave ‘radiation stress’. This wave—mean flow interaction process is responsible for producing the well known equatorial quasi-biennial oscillation.


2010 ◽  
Vol 23 (23) ◽  
pp. 6221-6233 ◽  
Author(s):  
Lu Anne Thompson ◽  
Young-Oh Kwon

Abstract Enhanced decadal variability in sea surface temperature (SST) centered on the Kuroshio Extension (KE) has been found in the Community Climate System Model version 3 (CCSM3) as well as in other coupled climate models. This decadal peak has higher energy than is found in nature, almost twice as large in some cases. While previous analyses have concentrated on the mechanisms for such decadal variability in coupled models, an analysis of the causes of excessive SST response to changes in wind stress has been missing. Here, a detailed comparison of the relationships between interannual changes in SST and sea surface height (SSH) as a proxy for geostrophic surface currents in the region in both CCSM3 and observations, and how these relationships depend on the mean ocean circulation, temperature, and salinity, is made. We use observationally based climatological temperature and salinity fields as well as satellite-based SSH and SST fields for comparison. The primary cause for the excessive SST variability is the coincidence of the mean KE with the region of largest SST gradients in the model. In observations, these two regions are separated by almost 500 km. In addition, the too shallow surface oceanic mixed layer in March north of the KE in the subarctic Pacific contributes to the biases. These biases are not unique to CCSM3 and suggest that mean biases in current, temperature, and salinity structures in separated western boundary current regions can exert a large influence on the size of modeled decadal SST variability.


Author(s):  
TAKURO MATSUTA ◽  
YUKIO MASUMOTO

AbstractThe non-locality of eddy-mean flow interactions, which appears explicitly in the modified Lorentz diagram as a form of the interaction energy, and its link to other estimation methods are revisited, and a new formulation for the potential enstrophy is proposed. The application of these methods to the Kuroshio extension region suggests that the combined use of energy analysis with other methods, including the potential enstrophy diagram, provides more comprehensive understandings for the eddy-mean flow interactions in the limited region. It is shown that the interaction energy is transported from the nearshore and upstream regions to the downstream region in the form of the interaction energy flux, causing acceleration of the Kuroshio extension jet in the downstream region. The potential enstrophy diagram indicates that the eddy field decelerates (accelerates) the jet in the nearshore (downstream) region, which is a consistent result with the energy analysis. It turns out that the interaction potential enstrophy flux is radiated from a region of the eddy kinetic energy maximum towards the upstream region, which is the opposite direction from the interaction energy flux. The interaction potential enstrophy flux originated from this eddy kinetic energy maximum region also convergences near the center of the northern recirculation gyre of the Kuroshio extension region and tends to stabilize the structures of the recirculation gyre. Together with the energy analysis that indicates the eddy field accelerates the northeastern part of the recirculation gyre through the local interactions, the present analyses support the arguments on the eddy-driven northern recirculation gyre.


2016 ◽  
Vol 46 (5) ◽  
pp. 1477-1494 ◽  
Author(s):  
Yang Yang ◽  
X. San Liang

AbstractUsing a recently developed energetics diagnostic methodology, namely, the localized multiscale energy and vorticity analysis (MS-EVA), this study investigates the intricate nonlinear mutual interactions among the decadally modulating mean flow, the interannual fluctuations, and the transient eddies in the Kuroshio Extension region. It is found that the mean kinetic energy maximizes immediately east of the Izu–Ogasawara Ridge, while the transient eddy kinetic energy does not peak until 400 km away downstream. The interannual variabilities, which are dominated by a jet-trapped Rossby wave mode, provide an energy reservoir comparable to the other counterparts. In the upstream, strong localized barotropic and baroclinic transfers from the mean flow to the eddies are observed, whereas those from the interannual variabilities are not significant. Besides fueling the eddies, the unstable mean jet also releases energy to the interannual-scale processes. Between 144° and 154°E, both transfers from the mean flow and the interannual variabilities are important for the eddy development. Farther downstream, eddies are found to drive the mean flow on both the kinetic energy (KE) and available potential energy (APE) maps. They also provide KE to the interannual variabilities but obtain APE from the latter. The gained eddy APE is then converted to eddy KE through buoyancy conversion. Upscale energy transfers are observed in the northern and southern recirculation gyre (RG) regions. In these regions, the interannual–eddy interaction exhibits different scenarios: the eddies lose KE to the interannual processes in the northern RG region, while gaining KE in the southern RG region.


2008 ◽  
Vol 38 (8) ◽  
pp. 1764-1779 ◽  
Author(s):  
Bo Qiu ◽  
Shuiming Chen ◽  
Peter Hacker ◽  
Nelson G. Hogg ◽  
Steven R. Jayne ◽  
...  

Abstract Middepth, time-mean circulation in the western North Pacific Ocean (28°–45°N, 140°–165°E) is investigated using drift information from the profiling floats deployed in the Kuroshio Extension System Study (KESS) and the International Argo programs. A well-defined, cyclonic recirculation gyre (RG) is found to exist north of the Kuroshio Extension jet, confined zonally between the Japan Trench (∼145°E) and the Shatsky Rise (∼156°E), and bordered to the north by the subarctic boundary along ∼40°N. This northern RG, which is simulated favorably in the eddy-resolving OGCM for the Earth Simulator (OFES) hindcast run model, has a maximum volume transport at 26.4 Sv across 159°E and its presence persists on the interannual and longer time scales. An examination of the time-mean x-momentum balance from the OFES hindcast run output reveals that horizontal convergence of Reynolds stresses works to accelerate both the eastward-flowing Kuroshio Extension jet and a westward mean flow north of the meandering jet. The fact that the northern RG is eddy driven is further confirmed by examining the turbulent Sverdrup balance, in which convergent eddy potential vorticity fluxes are found to induce the cyclonic RG across the background potential vorticity gradient field. For the strength of the simulated northern RG, the authors find the eddy dissipation effect to be important as well.


2019 ◽  
Vol 49 (8) ◽  
pp. 2147-2164 ◽  
Author(s):  
Yang Yang ◽  
X. San Liang

AbstractUsing a new analysis tool, namely, multiscale window transform (MWT), and the MWT-based theory of canonical transfer, this study investigates the spatiotemporal variations of the nonlinear interactions among the mean flows, interannual variabilities, quasi-annual fluctuations, and eddies in the global ocean. It is found that the canonical kinetic energy (KE) transfers are highly inhomogeneous in space, maximized in the western boundary current (WBC), Southern Ocean, and equatorial regions. In contrast to the equatorial and WBC regions where the temporal KE cascades are mainly forward, the Southern Ocean is the very place where coherent large-scale patterns of inverse KE cascade take place. The canonical transfers are also found to be highly variable in time. Specifically, in the Kuroshio Extension, the transfer from the mean flow to the interannual variability is in pace with the external winds from the eastern North Pacific; in the subtropical gyre, the mean flow-to-eddy transfer is responsible for the variability of the eddy kinetic energies (EKE) at both interannual and seasonal scales; in the tropics, the downscale transfers to the eddies from the other three scales all contribute to the interannual modulation of the EKE, and these transfers tend to decrease (increase) during El Niño (La Niña) events. In the Southern Ocean, the high-frequency eddies are found to feed KE to the low-frequency variability through temporal inverse cascade processes, which have been strengthened due to the enhanced eddy activities in the recent decade. Also discussed here is the relation between the seasonal EKE variability and the eddy–quasi-annual fluctuation interaction.


2014 ◽  
Vol 44 (9) ◽  
pp. 2336-2352 ◽  
Author(s):  
Ru Chen ◽  
Glenn R. Flierl ◽  
Carl Wunsch

Abstract The assumption that local baroclinic instability dominates eddy–mean flow interactions is tested on a global scale using a dynamically consistent eddy-permitting state estimate. Interactions are divided into local and nonlocal. If all the energy released from the mean flow through eddy–mean flow interaction is used to support eddy growth in the same region, or if all the energy released from eddies through eddy–mean flow interaction is used to feed back to the mean flow in the same region, eddy–mean flow interaction is local; otherwise, it is nonlocal. Different regions have different characters: in the subtropical region studied in detail, interactions are dominantly local. In the Southern Ocean and Kuroshio and Gulf Stream Extension regions, they are mainly nonlocal. Geographical variability of dominant eddy–eddy and eddy–mean flow processes is a dominant factor in understanding ocean energetics.


Sign in / Sign up

Export Citation Format

Share Document