scholarly journals The Antecedent Large-Scale Conditions of the “Perfect Storms” of Late October and Early November 1991

2010 ◽  
Vol 138 (7) ◽  
pp. 2546-2569 ◽  
Author(s):  
Jason M. Cordeira ◽  
Lance F. Bosart

Abstract The “Perfect Storms” (PSs) were a series of three high-impact extratropical cyclones (ECs) that impacted North America and the North Atlantic in late October and early November 1991. The PSs included the Perfect Storm in the northwest Atlantic, a second EC over the North Atlantic that developed from the interaction of the PS with Hurricane Grace, and a third EC over North America commonly known as the “1991 Halloween Blizzard.” The PSs greatly impacted the North Atlantic and North America with large waves, coastal flooding, heavy snow, and accumulating ice, and they also provided an opportunity to investigate the physical processes that contributed to a downstream baroclinic development (DBD) episode across North America that culminated in the ECs. Downstream baroclinic development resulted from an amplification of the large-scale flow over the North Pacific that was influenced by anomalous tropical convection, the recurvature and extratropical transition of western North Pacific Tropical Cyclones Orchid, Pat, and Ruth, and the subsequent evolution of the extratropical flow. The progression of DBD occurred following the development of a negative PNA regime and the generation of baroclinic instability over North America associated with equatorward-displaced potential vorticity anomalies and poleward-displaced corridors of high moisture content. An analysis of the eddy kinetic energy tendency equation demonstrated that the resulting baroclinic conversion of eddy available potential energy into eddy kinetic energy during the cyclogenesis process facilitated the progression of DBD across North America and the subsequent development of the ECs.

2018 ◽  
Vol 48 (10) ◽  
pp. 2283-2303 ◽  
Author(s):  
René Schubert ◽  
Arne Biastoch ◽  
Meghan F. Cronin ◽  
Richard J. Greatbatch

AbstractBenthic storms are important for both the energy budget of the ocean and for sediment resuspension and transport. Using 30 years of output from a high-resolution model of the North Atlantic, it is found that most of the benthic storms in the model occur near the western boundary in association with the Gulf Stream and the North Atlantic Current, in regions that are generally collocated with the peak near-bottom eddy kinetic energy. A common feature is meander troughs in the near-surface jets that are accompanied by deep low pressure anomalies spinning up deep cyclones with near-bottom velocities of up to more than 0.5 m s−1. A case study of one of these events shows the importance of both baroclinic and barotropic instability of the jet, with energy being extracted from the jet in the upstream part of the meander trough and partly returned to the jet in the downstream part of the meander trough. This motivates examining the 30-yr time mean of the energy transfer from the (annual mean) background flow into the eddy kinetic energy. This quantity is shown to be collocated well with the region in which benthic storms and large increases in deep cyclonic relative vorticity occur most frequently, suggesting an important role for mixed barotropic–baroclinic instability-driven cyclogenesis in generating benthic storms throughout the model simulation. Regions of the largest energy transfer and most frequent benthic storms are found to be the Gulf Stream west of the New England Seamounts and the North Atlantic Current near Flemish Cap.


2019 ◽  
Vol 19 (6) ◽  
pp. 3927-3937 ◽  
Author(s):  
Daniel Mewes ◽  
Christoph Jacobi

Abstract. Arctic amplification causes the meridional temperature gradient between middle and high latitudes to decrease. Through this decrease the large-scale circulation in the midlatitudes may change and therefore the meridional transport of heat and moisture increases. This in turn may increase Arctic warming even further. To investigate patterns of Arctic temperature, horizontal transports and their changes in time, we analysed ERA-Interim daily winter data of vertically integrated horizontal moist static energy transport using self-organizing maps (SOMs). Three general transport pathways have been identified: the North Atlantic pathway with transport mainly over the northern Atlantic, the North Pacific pathway with transport from the Pacific region, and the Siberian pathway with transport towards the Arctic over the eastern Siberian region. Transports that originate from the North Pacific are connected to negative temperature anomalies over the central Arctic. These North Pacific pathways have been becoming less frequent during the last decades. Patterns with origin of transport in Siberia are found to have no trend and show cold temperature anomalies north of Svalbard. It was found that transport patterns that favour transport through the North Atlantic into the central Arctic are connected to positive temperature anomalies over large regions of the Arctic. These temperature anomalies resemble the warm Arctic–cold continents pattern. Further, it could be shown that transport through the North Atlantic has been becoming more frequent during the last decades.


2020 ◽  
Author(s):  
Binhe Luo ◽  
Dehai Luo ◽  
Aiguo Dai ◽  
Lixin Wu

<p>Winter surface air temperature (SAT) over North America exhibits pronounced variability on sub-seasonal-to-interdecadal timescales, but its causes are not fully understood. Here observational and reanalysis data from 1950-2017 are analyzed to investigate these causes. Detrended daily SAT data reveals a known warm-west/cold-east (WWCE) dipole over midlatitude North America and a cold-north/warm-south (CNWS) dipole over eastern North America. It is found that while the North Pacific blocking (PB) is important for the WWCE and CNWS dipoles, they also depend on the phase of the North Atlantic Oscillation (NAO). When a negative-phase NAO (NAO-) concurs with PB, the WWCE dipole is enhanced (compared with the PB alone case) and it also leads to a warm north/cold south dipole anomaly in eastern North America; but when PB occurs with a positive-phase NAO (NAO<sup>+</sup>), the WWCE dipole weakens and the CNWS dipole is enhanced. In particular, the WWCE dipole is favored by a combination of eastward-displaced PB and NAO<sup>-</sup> that form a negative Arctic Oscillation. Furthermore, a WWCE dipole can form over midlatitude North America when PB occurs together with southward-displaced NAO<sup>+</sup>.The PB events concurring with NAO<sup>-</sup> (NAO<sup>+</sup>) and SAT WWCE (CNWS) dipole are favored by the El Nio-like (La Nia-like) SST mode, though related to the North Atlantic warm-cold-warm (cold-warm-cold) SST tripole pattern. It is also found that the North Pacific mode tends to enhance the WWCE SAT dipole through increasing PB-NAO<sup>-</sup> events and producing the WWCE SAT dipole component related to the PB-NAO<sup>+</sup> events because the PB and NAO<sup>+</sup> form a more zonal wave train in this case.</p>


2015 ◽  
Vol 72 (12) ◽  
pp. 4569-4590 ◽  
Author(s):  
Gwendal Rivière ◽  
Marie Drouard

Abstract Rapid onsets of positive and negative tropospheric northern annular mode (NAM) events during boreal winters are studied using ERA-Interim datasets. The NAM anomalies first appear in the North Pacific from low-frequency Rossby wave propagation initiated by anomalous convection in the western tropical Pacific around 2 weeks before the peak of the events. For negative NAM, the enhanced convection leads to a zonal acceleration of the Pacific jet, while for positive NAM, the reduced convection leads to a poleward-deviated jet in its exit region. The North Atlantic anomalies, which correspond to North Atlantic Oscillation (NAO) anomalies, are formed in close connection with the North Pacific anomalies via downstream propagation of low-frequency planetary-scale and high-frequency synoptic waves, the latter playing a major role during the last onset week. Prior to positive NAM, the generation of synoptic waves in the North Pacific and their downstream propagation is strong. The poleward-deviated Pacific jet favors a southeastward propagation of the waves across North America and anticyclonic breaking in the North Atlantic. The associated strong poleward eddy momentum fluxes push the Atlantic jet poleward and form the positive NAO phase. Conversely, prior to negative NAM, synoptic wave propagation across North America is significantly reduced and more zonal because of the more zonally oriented Pacific jet. This, together with a strong eddy generation in the North Atlantic, leads to equatorward eddy momentum fluxes, cyclonic wave breaking, and the formation of the negative NAO phase. Even though the stratosphere may play a role in some individual cases, it is not the main driver of the composited tropospheric NAM events.


2004 ◽  
Vol 11 (3) ◽  
pp. 295-301 ◽  
Author(s):  
V. N. Khokhlov ◽  
A. V. Glushkov ◽  
I. A. Tsenenko

Abstract. In this paper, we employ a non-decimated wavelet decomposition to analyse long-term variations of the teleconnection pattern monthly indices (the North Atlantic Oscillation and the Southern Oscillation) and the relationship of these variations with eddy kinetic energy contents (KE) in the atmosphere of mid-latitudes and tropics. Major advantage of using this tool is to isolate short- and long-term components of fluctuations. Such analysis allows revealing basic periodic behaviours for the North Atlantic Oscillations (NAO) indices such as the 4-8-year and the natural change of dominant phase. The main results can be posed as follows. First, if the phases of North Atlantic and Southern Oscillations vary synchronously with the 4-8-year period then the relationship between the variations of the NAO indices and the KE contents is the most appreciable. Second, if the NAO phase tends to abrupt changes then the impact of these variations on the eddy kinetic energy contents in both mid-latitudes and tropics is more significant than for the durational dominance of certain phase.


2012 ◽  
Vol 25 (14) ◽  
pp. 4993-5010 ◽  
Author(s):  
Ying Li ◽  
Ngar-Cheung Lau

Abstract The spatiotemporal evolution of various meteorological phenomena associated with El Niño–Southern Oscillation (ENSO) in the North Pacific–North American–North Atlantic sector is examined using both NCEP–NCAR reanalyses and output from a 2000-yr integration of a global coupled climate model. Particular attention is devoted to the implications of downstream eddy developments on the relationship between ENSO and the atmospheric circulation over the North Atlantic. The El Niño–related persistent events are characterized by a strengthened Pacific subtropical jet stream and an equatorward-shifted storm track over the North Pacific. The wave packets that populate the storm tracks travel eastward through downstream development. The barotropic forcing of the embedded synoptic-scale eddies is conducive to the formation of a flow that resembles the negative phase of the North Atlantic Oscillation (NAO). The more frequent and higher persistence of those episodes during El Niño winters contribute to the prevalence of negative NAO conditions. The above processes are further delineated by conducting a case study for the 2009/10 winter season, in which both El Niño and negative NAO conditions prevailed. It is illustrated that the frequent and intense surface cyclone development over North America and the western Atlantic throughout that winter are associated with upper-level troughs propagating across North America, which in turn are linked to downstream evolution of wave packets originating from the Pacific storm track.


2015 ◽  
Vol 28 (5) ◽  
pp. 1806-1823 ◽  
Author(s):  
Angela J. Colbert ◽  
Brian J. Soden ◽  
Ben P. Kirtman

Abstract The impact of natural and anthropogenic climate change on tropical cyclone (TC) tracks in the western North Pacific (WNP) is examined using a beta and advection model (BAM) to isolate the influence of changes in the large-scale steering flow from changes in genesis location. The BAM captures many of the observed changes in TC tracks due to El Niño–Southern Oscillation (ENSO), while little change is noted for the Pacific decadal oscillation and all-India monsoon rainfall in either observations or BAM simulations. Analysis with the BAM suggests that the observed shifts in the average track between the phases of ENSO are primarily due to changes in the large-scale steering flow, with changes in genesis location playing a secondary role. Potential changes in TC tracks over the WNP due to anthropogenic climate change are also assessed. Ensemble mean projections are downscaled from 17 CMIP3 models and 26 CMIP5 models. Statistically significant decreases [~(4%–6%)] in westward moving TCs and increases [~(5%–7%)] in recurving ocean TCs are found. These correspond to projected decreases of 3–5 TCs per decade over the Philippines and increases of 1–3 TCs per decade over the central WNP. The projected changes are primarily caused by a reduction in the easterlies. This slows the storm movement, allowing more time for the beta drift to carry the storm northward and recurve. A previous study found similar results in the North Atlantic. Taken together, these results suggest that a weakening of the mean atmospheric circulation in response to anthropogenic warming will lead to fewer landfalling storms over the North Atlantic and WNP.


2017 ◽  
Vol 30 (10) ◽  
pp. 3705-3724 ◽  
Author(s):  
Jiabao Wang ◽  
Hye-Mi Kim ◽  
Edmund K. M. Chang

Abstract An interdecadal weakening in the North Atlantic storm track (NAST) and a poleward shift of the North Pacific storm track (NPST) are found during October–March for the period 1979–2015. A significant warming of surface air temperature (Ts) over northeastern North America and a La Niña–like change in the North Pacific under the background of Arctic amplification are found to be the contributors to the observed changes in the NAST and the NPST, respectively, via modulation of local baroclinicity. The interdecadal change in baroclinic energy conversion is consistent with changes in storm tracks with an energy loss from eddies to mean flow over the North Atlantic and an energy gain over the North Pacific. The analysis of simulations from the Community Earth System Model Large Ensemble project, although with some biases in storm-track and Ts simulations, supports the observed relationship between the NAST and Ts over northeastern North America, as well as the link between the NPST and El Niño–Southern Oscillation. The near-future projections of Ts and storm tracks are characterized by a warmer planet under the influence of increasing greenhouse gases and a significant weakening of both the NAST and the NPST. The potential role of the NAST in redistributing changes in Ts over the surrounding regions is also examined. The anomalous equatorward moisture flux associated with the weakening trend of the NAST would enhance the warming over its upstream region and hinder the warming over its downstream region via modulation of the downward infrared radiation.


Sign in / Sign up

Export Citation Format

Share Document