scholarly journals The Basic Ingredients of the North Atlantic Storm Track. Part II: Sea Surface Temperatures

2011 ◽  
Vol 68 (8) ◽  
pp. 1784-1805 ◽  
Author(s):  
David James Brayshaw ◽  
Brian Hoskins ◽  
Michael Blackburn

Abstract The impact of North Atlantic SST patterns on the storm track is investigated using a hierarchy of GCM simulations using idealized (aquaplanet) and “semirealistic” boundary conditions in the atmospheric component (HadAM3) of the third climate configuration of the Met Office Unified Model (HadCM3). This framework enables the mechanisms determining the tropospheric response to North Atlantic SST patterns to be examined, both in isolation and in combination with continental-scale landmasses and orography. In isolation, a “Gulf Stream” SST pattern acts to strengthen the downstream storm track while a “North Atlantic Drift” SST pattern weakens it. These changes are consistent with changes in the extratropical SST gradient and near-surface baroclinicity, and each storm-track response is associated with a consistent change in the tropospheric jet structure. Locally enhanced near-surface horizontal wind convergence is found over the warm side of strengthened SST gradients associated with ascending air and increased precipitation, consistent with previous studies. When the combined SST pattern is introduced into the semirealistic framework (including the “North American” continent and the “Rocky Mountains”), the results suggest that the topographically generated southwest–northeast tilt in the North Atlantic storm track is enhanced. In particular, the Gulf Stream shifts the storm track south in the western Atlantic whereas the strong high-latitude SST gradient in the northeastern Atlantic enhances the storm track there.

2011 ◽  
Vol 24 (24) ◽  
pp. 6515-6527 ◽  
Author(s):  
Xuhua Cheng ◽  
Shang-Ping Xie ◽  
Hiroki Tokinaga ◽  
Yan Du

Abstract Interannual variability of high-wind occurrence over the North Atlantic is investigated based on observations from the satellite-borne Special Sensor Microwave Imager (SSM/I). Despite no wind direction being included, SSM/I data capture major features of high-wind frequency (HWF) quite well. Climatology maps show that HWF is highest in winter and is close to zero in summer. Remarkable interannual variability of HWF is found in the vicinity of the Gulf Stream, over open sea south of Iceland, and off Cape Farewell, Greenland. On interannual scales, HWF south of Iceland has a significant positive correlation with the North Atlantic Oscillation (NAO). An increase in the mean westerlies and storm-track intensity during a positive NAO event cause HWF to increase in this region. In the vicinity of the Gulf Stream, HWF is significantly correlated with the difference between sea surface temperature and surface air temperature (SST − SAT), indicative of the importance of atmospheric instability. Cross-frontal wind and an SST gradient are important for the instability of the marine atmospheric boundary layer on the warm flank of the SST front. Off Cape Farewell, high wind occurs in both westerly and easterly tip jets. Quick Scatterometer (QuikSCAT) data show that variability in westerly (easterly) HWF off Cape Farewell is positively (negatively) correlated with the NAO.


2009 ◽  
Vol 66 (9) ◽  
pp. 2539-2558 ◽  
Author(s):  
David James Brayshaw ◽  
Brian Hoskins ◽  
Michael Blackburn

Abstract Understanding and predicting changes in storm tracks over longer time scales is a challenging problem, particularly in the North Atlantic. This is due in part to the complex range of forcings (land–sea contrast, orography, sea surface temperatures, etc.) that combine to produce the structure of the storm track. The impact of land–sea contrast and midlatitude orography on the North Atlantic storm track is investigated through a hierarchy of GCM simulations using idealized and “semirealistic” boundary conditions in a high-resolution version of the Hadley Centre atmosphere model (HadAM3). This framework captures the large-scale essence of features such as the North and South American continents, Eurasia, and the Rocky Mountains, enabling the results to be applied more directly to realistic modeling situations than was possible with previous idealized studies. The physical processes by which the forcing mechanisms impact the large-scale flow and the midlatitude storm tracks are discussed. The characteristics of the North American continent are found to be very important in generating the structure of the North Atlantic storm track. In particular, the southwest–northeast tilt in the upper tropospheric jet produced by southward deflection of the westerly flow incident on the Rocky Mountains leads to enhanced storm development along an axis close to that of the continent’s eastern coastline. The approximately triangular shape of North America also enables a cold pool of air to develop in the northeast, intensifying the surface temperature contrast across the eastern coastline, consistent with further enhancements of baroclinicity and storm growth along the same axis.


2021 ◽  
Author(s):  
Nicole Albern ◽  
Aiko Voigt ◽  
Joaquim G. Pinto

<p>During boreal winter (December to February, DJF), the North Atlantic jet stream and storm track are expected to extend eastward over Europe in response to climate change. This will affect future weather and climate over Europe, for example by steering storms which are associated with strong winds and heavy precipitation towards Europe. The jet stream and storm track responses over Europe are robust across coupled climate models of phases 3, 5, and 6 of the Coupled Model Intercomparison Project (CMIP; Harvey et al., 2020, JGR-A, https://doi.org/10.1029/2020JD032701). We show that the jet stream response is further robust across CMIP5 models of varying complexity ranging from coupled climate models to atmosphere-only General Circulation Models (GCMs) with prescribed sea-surface temperatures (SSTs) and sea-ice cover. In contrast to the jet stream response over Europe, the jet stream response over the North Atlantic is not robust in the coupled climate models and the atmosphere-only GCMs.</p><p>In addition to the CMIP5 simulations, we investigate Amip-like simulations with the atmospheric components of ICON-NWP, and the CMIP5 models MPI-ESM-LR and IPSL-CM5A-LR that apply the cloud-locking method to break the cloud-radiation-circulation coupling and to diagnose the contribution of cloud-radiative changes on the jet stream response to climate change. In the simulations, SSTs are prescribed to isolate the impact of cloud-radiative changes via the atmospheric pathway, i.e., via changes in atmospheric cloud-radiative heating, and global warming is mimicked by a uniform 4K SST increase (cf. Albern et al., 2019, JAMES, https://doi.org/10.1029/2018MS001592 and Voigt et al., 2019, J. Climate, https://doi.org/10.1175/JCLI-D-18-0810.1). In all three models, cloud-radiative changes contribute significantly and robustly to the eastward extension of the North Atlantic jet stream towards Europe. At the same time, cloud-radiative changes contribute to the model uncertainty over the North Atlantic. In addition to the jet stream response, we investigate the impact of cloud-radiative changes on the storm track response in ICON-NWP and discuss similarities and differences between the jet stream and storm track responses over the North Atlantic-European region.</p><p>In ICON-NWP, the impact of cloud-radiative changes on the jet stream response is dominated by tropical cloud-radiative changes while midlatitude and polar cloud-radiative changes have a minor impact. A further division of the tropics into four smaller tropical regions that cover the western tropical Pacific, the eastern tropical Pacific, the tropical Atlantic, and the Indian Ocean shows that cloud-radiative changes over the western tropical Pacific, eastern tropical Pacific, and Indian Ocean all contribute about equally to the eastward extension of the North Atlantic jet stream towards Europe because these regions exhibit substantial upper-tropospheric cloud-radiative heating in response to climate change. At the same time, cloud-radiative changes over the tropical Atlantic hardly contribute to the jet response over Europe because changes in atmospheric cloud-radiative heating under climate change are small in this region. As for the impact of global cloud-radiative changes, we also discuss the impact of the regional cloud-radiative changes on the storm track response over the North Atlantic-European region to climate change.</p>


2009 ◽  
Vol 22 (11) ◽  
pp. 3146-3155 ◽  
Author(s):  
David J. Brayshaw ◽  
Tim Woollings ◽  
Michael Vellinga

Abstract The tropospheric response to a forced shutdown of the North Atlantic Ocean’s meridional overturning circulation (MOC) is investigated in a coupled ocean–atmosphere GCM [the third climate configuration of the Met Office Unified Model (HadCM3)]. The strength of the boreal winter North Atlantic storm track is significantly increased and penetrates much farther into western Europe. The changes in the storm track are shown to be consistent with the changes in near-surface baroclinicity, which can be linked to changes in surface temperature gradients near regions of sea ice formation and in the open ocean. Changes in the SST of the tropical Atlantic are linked to a strengthening of the subtropical jet to the north, which, combined with the enhanced storm track, leads to a pronounced split in the jet structure over Europe. EOF analysis and stationary box indices methods are used to analyze changes to the North Atlantic Oscillation (NAO). There is no consistent signal of a change in the variability of the NAO, and while the changes in the mean flow project onto the positive NAO phase, they are significantly different from it. However, there is a clear eastward shift of the NAO pattern in the shutdown run, and this potentially has implications for ocean circulation and for the interpretation of proxy paleoclimate records.


2020 ◽  
Author(s):  
Nour-Eddine Omrani ◽  
Fumiaki Ogawa ◽  
Hisashi Nakamura ◽  
Noel Keenlyside ◽  
Sandro Lubis ◽  
...  

<p>Semi-idealized Atmospheric General Circulation-Model (AGCM) experiments are used, in order to study the different aspects of the hemisphere-scale wintertime troposphere/stratosphere-coupled circulation that are maintained by the North Atlantic and Pacific Ocean Western Boundary Currents (OWBCs). Here we show that the North Atlantic and Pacific OWBCs jointly maintain and shape the wintertime hemispheric circulation and its leading mode of variability Northern Annular Mode (NAM). The OWBCs energize baroclinic waves that reinforce quasi-annular hemispheric structure in the tropospheric eddy-driven jetstreams and NAM variability. Without the OWBCs, the wintertime NAM variability is much weaker and its impact on the continental and maritime surface climate is largely insignificant. Atmospheric energy redistribution caused by the OWBCs acts to damp the near-surface atmospheric baroclinicity and compensates the associated oceanic meridional energy transport in agreement with the Bjerknes compensation. Furthermore, the OWBCs substantially weaken the wintertime stratospheric polar vortex by enhancing the upward planetary wave propagation, and thereby affecting both stratospheric and tropospheric NAM-annularity. It is shown that the impact of OWBCs on northern hemisphere circulation has significant implication for stratosphere/troposphere dynamical coupling, time-scales on the NAM, frequency of Sudden stratospheric warming and potential formation of polar stratospheric clouds.</p><p> </p><p>Reference:</p><p>Omrani et al., 2019: Key Role of the ocean Western Boundary currents in shaping the Northern Hemisphere climate, Scientific Reports, https://doi.org/10.1038/s41598-019-39392-y</p><p> </p>


2011 ◽  
Vol 41 (5) ◽  
pp. 911-925 ◽  
Author(s):  
Irina I. Rypina ◽  
Lawrence J. Pratt ◽  
M. Susan Lozier

Abstract Motivated by discrepancies between Eulerian transport estimates and the behavior of Lagrangian surface drifters, near-surface transport pathways and processes in the North Atlantic are studied using a combination of data, altimetric surface heights, statistical analysis of trajectories, and dynamical systems techniques. Particular attention is paid to the issue of the subtropical-to-subpolar intergyre fluid exchange. The velocity field used in this study is composed of a steady drifter-derived background flow, upon which a time-dependent altimeter-based perturbation is superimposed. This analysis suggests that most of the fluid entering the subpolar gyre from the subtropical gyre within two years comes from a narrow region lying inshore of the Gulf Stream core, whereas fluid on the offshore side of the Gulf Stream is largely prevented from doing so by the Gulf Stream core, which acts as a strong transport barrier, in agreement with past studies. The transport barrier near the Gulf Stream core is robust and persistent from 1992 until 2008. The qualitative behavior is found to be largely independent of the Ekman drift.


2012 ◽  
Vol 69 (3) ◽  
pp. 840-856 ◽  
Author(s):  
Jérôme Saulière ◽  
David James Brayshaw ◽  
Brian Hoskins ◽  
Michael Blackburn

Abstract Building on previous studies of the basic ingredients of the North Atlantic storm track (examining land–sea contrast, orography, and SST), this article investigates the impact of Eurasian topography and Pacific SST anomalies on North Pacific and Atlantic storm tracks through a hierarchy of atmospheric GCM simulations using idealized boundary conditions in the Hadley Centre HadGAM1 atmospheric circulation model. The Himalaya–Tibet mountain complex is found to play a crucial role in shaping the North Pacific storm track. The northward deflection of the westerly flow around northern Tibet generates an extensive pool of very cold air in the northeastern tip of the Asian continent, which strengthens the meridional temperature gradient and favors baroclinic growth in the western Pacific. The Kuroshio SST front is also instrumental in strengthening the Pacific storm track through its impact on near-surface baroclinicity, while the warm waters around Indonesia tend to weaken it through the impact on baroclinicity of stationary Rossby waves propagating poleward from the convective heating regions. Three mechanisms by which the Atlantic storm track may be affected by changes in the boundary conditions upstream of the Rockies are discussed. In the model configuration used here, stationary Rossby waves emanating from Tibet appear to weaken the North Atlantic storm track substantially, whereas those generated over the cold waters off Peru appear to strengthen it. Changes in eddy-driven surface winds over the Pacific generally appear to modify the flow over the Rocky Mountains, leading to consistent modifications in the Atlantic storm track. The evidence for each of these mechanisms is, however, ultimately equivocal in these simulations.


Author(s):  
David James Brayshaw ◽  
Brian Hoskins ◽  
Emily Black

The winter climate of Europe and the Mediterranean is dominated by the weather systems of the mid-latitude storm tracks. The behaviour of the storm tracks is highly variable, particularly in the eastern North Atlantic, and has a profound impact on the hydroclimate of the Mediterranean region. A deeper understanding of the storm tracks and the factors that drive them is therefore crucial for interpreting past changes in Mediterranean climate and the civilizations it has supported over the last 12 000 years (broadly the Holocene period). This paper presents a discussion of how changes in climate forcing (e.g. orbital variations, greenhouse gases, ice sheet cover) may have impacted on the ‘basic ingredients’ controlling the mid-latitude storm tracks over the North Atlantic and the Mediterranean on intermillennial time scales. Idealized simulations using the HadAM3 atmospheric general circulation model (GCM) are used to explore the basic processes, while a series of timeslice simulations from a similar atmospheric GCM coupled to a thermodynamic slab ocean (HadSM3) are examined to identify the impact these drivers have on the storm track during the Holocene. The results suggest that the North Atlantic storm track has moved northward and strengthened with time since the Early to Mid-Holocene. In contrast, the Mediterranean storm track may have weakened over the same period. It is, however, emphasized that much remains still to be understood about the evolution of the North Atlantic and Mediterranean storm tracks during the Holocene period.


2019 ◽  
Vol 46 (3) ◽  
pp. 1702-1708 ◽  
Author(s):  
Terrence M. Joyce ◽  
Young‐Oh Kwon ◽  
Hyodae Seo ◽  
Caroline C. Ummenhofer

Sign in / Sign up

Export Citation Format

Share Document