North Atlantic Tropical Storm Frequency Response to Anthropogenic Forcing: Projections and Sources of Uncertainty

2011 ◽  
Vol 24 (13) ◽  
pp. 3224-3238 ◽  
Author(s):  
Gabriele Villarini ◽  
Gabriel A. Vecchi ◽  
Thomas R. Knutson ◽  
Ming Zhao ◽  
James A. Smith

Abstract The impact of future anthropogenic forcing on the frequency of tropical storms in the North Atlantic basin has been the subject of intensive investigation. However, whether the number of North Atlantic tropical storms will increase or decrease in a warmer climate is still heavily debated and a consensus has yet to be reached. To shed light on this issue, the authors use a recently developed statistical model, in which the frequency of North Atlantic tropical storms is modeled by a conditional Poisson distribution with rate of occurrence parameter that is a function of tropical Atlantic and mean tropical sea surface temperatures (SSTs). It is shown how the disagreement among dynamical modeling projections of late-twenty-first-century tropical storm frequency can be largely explained by differences in large-scale SST patterns from the different climate model projections used in these studies. The results do not support the notion of large (~200%) increases in tropical storm frequency in the North Atlantic basin over the twenty-first century in response to increasing greenhouse gases (GHGs). Because the statistical model is computationally inexpensive, it is used to examine the impact of different climate models and climate change scenarios on the frequency of North Atlantic tropical storms. The authors estimate that the dominant drivers of uncertainty in projections of tropical storm frequency over the twenty-first century are internal climate variations and systematic intermodel differences in the response of SST patterns to increasing GHGs. Relative to them, uncertainties in total GHG emissions or other climate forcings, within the scenarios explored here, represent a minor source of uncertainty in tropical storm frequency projections. These results suggest that reducing uncertainty in future projections of North Atlantic tropical storm frequency may depend as critically on reducing the uncertainty in the sensitivity of tropical Atlantic warming relative to the tropical mean, in response to GHG increase, as on improving dynamical or statistical downscaling techniques. Moreover, the large uncertainties on century-scale trends that are due to internal climate variability are likely to remain irreducible for the foreseeable future. As a further illustration of the statistical model’s utility, the authors model projected changes in U.S. landfalling tropical storm activity under a variety of different climate change scenarios and climate models. These results are similar to those for the overall number of North Atlantic tropical storms, and do not point to a large increase in U.S. landfalling tropical storms over the twenty-first century in response to increasing GHGs.

2013 ◽  
Vol 26 (11) ◽  
pp. 3511-3527 ◽  
Author(s):  
Sanjiv Kumar ◽  
James Kinter ◽  
Paul A. Dirmeyer ◽  
Zaitao Pan ◽  
Jennifer Adams

Abstract The ability of phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate models to simulate the twentieth-century “warming hole” over North America is explored, along with the warming hole’s relationship with natural climate variability. Twenty-first-century warming hole projections are also examined for two future emission scenarios, the 8.5 and 4.5 W m−2 representative concentration pathways (RCP8.5 and RCP4.5). Simulations from 22 CMIP5 climate models were analyzed, including all their ensemble members, for a total of 192 climate realizations. A nonparametric trend detection method was employed, and an alternative perspective emphasizing trend variability. Observations show multidecadal variability in the sign and magnitude of the trend, where the twentieth-century temperature trend over the eastern United States appears to be associated with low-frequency (multidecadal) variability in the North Atlantic temperatures. Most CMIP5 climate models simulate significantly lower “relative power” in the North Atlantic multidecadal oscillations than observed. Models that have relatively higher skill in simulating the North Atlantic multidecadal oscillation also are more likely to reproduce the warming hole. It was also found that the trend variability envelope simulated by multiple CMIP5 climate models brackets the observed warming hole. Based on the multimodel analysis, it is found that in the twenty-first-century climate simulations the presence or absence of the warming hole depends on future emission scenarios; the RCP8.5 scenario indicates a disappearance of the warming hole, whereas the RCP4.5 scenario shows some chance (10%–20%) of the warming hole’s reappearance in the latter half of the twenty-first century, consistent with CO2 stabilization.


2013 ◽  
Vol 26 (18) ◽  
pp. 7187-7197 ◽  
Author(s):  
Wei Cheng ◽  
John C. H. Chiang ◽  
Dongxiao Zhang

Abstract The Atlantic meridional overturning circulation (AMOC) simulated by 10 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) for the historical (1850–2005) and future climate is examined. The historical simulations of the AMOC mean state are more closely matched to observations than those of phase 3 of the Coupled Model Intercomparison Project (CMIP3). Similarly to CMIP3, all models predict a weakening of the AMOC in the twenty-first century, though the degree of weakening varies considerably among the models. Under the representative concentration pathway 4.5 (RCP4.5) scenario, the weakening by year 2100 is 5%–40% of the individual model's historical mean state; under RCP8.5, the weakening increases to 15%–60% over the same period. RCP4.5 leads to the stabilization of the AMOC in the second half of the twenty-first century and a slower (then weakening rate) but steady recovery thereafter, while RCP8.5 gives rise to a continuous weakening of the AMOC throughout the twenty-first century. In the CMIP5 historical simulations, all but one model exhibit a weak downward trend [ranging from −0.1 to −1.8 Sverdrup (Sv) century−1; 1 Sv ≡ 106 m3 s−1] over the twentieth century. Additionally, the multimodel ensemble–mean AMOC exhibits multidecadal variability with a ~60-yr periodicity and a peak-to-peak amplitude of ~1 Sv; all individual models project consistently onto this multidecadal mode. This multidecadal variability is significantly correlated with similar variations in the net surface shortwave radiative flux in the North Atlantic and with surface freshwater flux variations in the subpolar latitudes. Potential drivers for the twentieth-century multimodel AMOC variability, including external climate forcing and the North Atlantic Oscillation (NAO), and the implication of these results on the North Atlantic SST variability are discussed.


2010 ◽  
Vol 23 (23) ◽  
pp. 6382-6393 ◽  
Author(s):  
Ming Zhao ◽  
Isaac M. Held

Abstract A statistical intensity adjustment is utilized to extract information from tropical cyclone simulations in a 50-km-resolution global model. A simple adjustment based on the modeled and observed probability distribution of storm lifetime maximum wind speed allows the model to capture the differences between observed intensity distributions in active/inactive year composites from the 1981–2008 period in the North Atlantic. This intensity adjustment is then used to examine the atmospheric model’s responses to different sea surface temperature anomalies generated by coupled models for the late twenty-first century. In the North Atlantic all simulations produce a reduction in the total number of cyclones, but with large intermodel spread in the magnitude of the reduction. The intensity response is positively correlated with changes in frequency across the ensemble. However, there is, on average, an increase in intensity in these simulations despite the mean reduction in frequency. The authors argue that it is useful to decompose these intensity changes into two parts: an increase in intensity that is intrinsic to the climate change experiments and a change in intensity positively correlated with frequency, just as in the active/inactive historical composites. By isolating the intrinsic component, which is relatively independent of the details of the SST warming pattern, an increase is found in storm-lifetime maximum winds of 5–10 m s−1 for storms with intensities of 30–60 m s−1, by the end of the twenty-first century. The effects of change in frequency, which are dependent on the details of the spatial structure of the warming, must then be superimposed on this intrinsic change.


2013 ◽  
Vol 26 (16) ◽  
pp. 6046-6066 ◽  
Author(s):  
Yalin Fan ◽  
Isaac M. Held ◽  
Shian-Jiann Lin ◽  
Xiaolan L. Wang

Abstract Surface wind (U10) and significant wave height (Hs) response to global warming are investigated using a coupled atmosphere–wave model by perturbing the sea surface temperatures (SSTs) with anomalies generated by the Working Group on Coupled Modeling (WGCM) phase 3 of the Coupled Model Intercomparison Project (CMIP3) coupled models that use the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4)/Special Report on Emissions Scenarios A1B (SRES A1B) scenario late in the twenty-first century. Several consistent changes were observed across all four realizations for the seasonal means: robust increase of U10 and Hs in the Southern Ocean for both the austral summer and winter due to the poleward shift of the jet stream; a dipole pattern of the U10 and Hs with increases in the northeast sector and decreases at the midlatitude during boreal winter in the North Atlantic due to the more frequent occurrence of the positive phases of the North Atlantic Oscillation (NAO); and strong decrease of U10 and Hs in the tropical western Pacific Ocean during austral summer, which might be caused by the joint effect of the weakening of the Walker circulation and the large hurricane frequency decrease in the South Pacific. Changes of the 99th percentile U10 and Hs are twice as strong as changes in the seasonal means, and the maximum changes are mainly dominated by the changes in hurricanes. Robust strong decreases of U10 and Hs in the South Pacific are obtained because of the large hurricane frequency decrease, while the results in the Northern Hemisphere basins differ among the models. An additional sensitivity experiment suggests that the qualitative response of U10 and Hs is not affected by using SST anomalies only and maintaining the radiative forcing unchanged (using 1980 values), as in this study.


2014 ◽  
Vol 27 (21) ◽  
pp. 8055-8069 ◽  
Author(s):  
Timothy E. LaRow ◽  
Lydia Stefanova ◽  
Chana Seitz

Abstract The effects on early and late twenty-first-century North Atlantic tropical cyclone statistics resulting from imposing the patterns of maximum/minimum phases of the observed Atlantic multidecadal oscillation (AMO) onto projected sea surface temperatures (SSTs) from two climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are examined using a 100-km resolution global atmospheric model. By imposing the observed maximum positive and negative phases of the AMO onto two CMIP5 SST projections from the representative concentration pathway (RCP) 4.5 scenario, this study places bounds on future North Atlantic tropical cyclone activity during the early (2020–39) and late (2080–99) twenty-first century. Averaging over both time periods and both AMO phases, the mean named tropical cyclones (NTCs) count increases by 35% when compared to simulations using observed SSTs from 1982 to 2009. The positive AMO simulations produce approximately a 68% increase in mean NTC count, while the negative AMO simulations are statistically indistinguishable from the mean NTC count determined from the 1995–2009 simulations—a period of observed positive AMO phase. Examination of the tropical cyclone track densities shows a statistically significant increase in the tracks along the East Coast of the United States in the future simulations compared to the models’ 1982–2009 climate simulations. The increase occurs regardless of AMO phase, although the negative phase produces higher track densities. The maximum wind speeds increase by 6%, in agreement with other climate change studies. Finally, the NTC-related precipitation is found to increase (approximately by 13%) compared to the 1982–2009 simulations.


Author(s):  
Emily Black ◽  
David J. Brayshaw ◽  
Claire M. C. Rambeau

Anthropogenic changes in precipitation pose a serious threat to society—particularly in regions such as the Middle East that already face serious water shortages. However, climate model projections of regional precipitation remain highly uncertain. Moreover, standard resolution climate models have particular difficulty representing precipitation in the Middle East, which is modulated by complex topography, inland water bodies and proximity to the Mediterranean Sea. Here we compare precipitation changes over the twenty-first century against both millennial variability during the Holocene and interannual variability in the present day. In order to assess the climate model and to make consistent comparisons, this study uses new regional climate model simulations of the past, present and future in conjunction with proxy and historical observations. We show that the pattern of precipitation change within Europe and the Middle East projected by the end of the twenty-first century has some similarities to that which occurred during the Holocene. In both cases, a poleward shift of the North Atlantic storm track and a weakening of the Mediterranean storm track appear to cause decreased winter rainfall in southern Europe and the Middle East and increased rainfall further north. In contrast, on an interannual time scale, anomalously dry seasons in the Middle East are associated with a strengthening and focusing of the storm track in the north Mediterranean and hence wet conditions throughout southern Europe.


2003 ◽  
Vol 84 (12) ◽  
pp. 1711-1724 ◽  
Author(s):  
Michael C. MacCracken ◽  
Eric J. Barron ◽  
David R. Easterling ◽  
Benjamin S. Felzer ◽  
Thomas R. Karl

In support of the U.S. National Assessment of the Potential Consequences of Climate Variability and Change, climate scenarios were prepared to serve as the basis for evaluating the vulnerability of environmental and societal systems to changes projected for the twenty-first century. Since publication of the results of the assessment at the end of 2000, the National Research Council's report Climate Change Science: An Analysis of Some Key Questions, and the U.S. government's U.S. Climate Action Report—2002 have both relied on the assessment's findings. Because of the importance of these findings, it is important to directly address questions regarding the representativeness and usefulness of the model-based projections on which the findings were based. In particular, criticisms have focused on whether the climate models that were relied upon adequately represented twentieth-century conditions and whether their projections of conditions for the twenty-first century were outliers. Reexamination of the approach used in developing and evaluating the climate scenarios indicates that the results from the two primary climate modeling groups that were relied upon allowed the generation of climate scenarios that span much of the range of possible future climatic conditions projected by the larger set of model simulations, which was compiled for the IPCCs Third Assessment Report. With the set of models showing increasing agreement in their simulations of twentieth-century trends in climate and of projected changes in climate on subcontinental to continental scales, the climate scenarios that were generated seem likely to provide a plausible representation of the types of climatic conditions that could be experienced during the twenty-first century. Warming, reduced snow cover, and more intense heavy precipitation events were projected by all models, suggesting such changes are quite likely. However, significant differences remain in the projection of changes in precipitation and of the regional departures in climate from the larger-scale patterns. For this reason, evaluating potential impacts using climate scenarios based on models exhibiting different regional responses is a necessary step to ensuring a representative analysis. Utilizing an even more encompassing set of scenarios in the future could help move from mainly qualitative toward more certain and quantitative conclusions.


2012 ◽  
Vol 25 (8) ◽  
pp. 2995-3009 ◽  
Author(s):  
Ming Zhao ◽  
Isaac M. Held

Abstract A tropical cyclone–permitting global atmospheric model is used to explore the hurricane frequency response to sea surface temperature (SST) anomalies generated by coupled models for the late-twenty-first century. Results are presented for SST anomalies averaged over 18 models as well as from 8 individual models. For each basin, there exists large intermodel spread in the magnitude and even the sign of the frequency response among the different SST projections. These sizable variations in response are explored to understand features of SST distributions that are important for the basin-wide hurricane responses. In the North Atlantic, the eastern Pacific, and the southern Indian basins, most (72%–86%) of the intermodel variance in storm frequency response can be explained by a simple relative SST index defined as a basin’s storm development region SST minus the tropical mean SST. The explained variance is significantly lower in the South Pacific (48%) and much lower in the western Pacific basin (27%). Several atmospheric parameters are utilized to probe changes in tropical atmospheric circulation and thermodynamical properties relevant to storm genesis in the model. While all present strong correlation to storm response in some basins, a parameter-measuring tropospheric convective mass flux stands out as skillful in explaining the simulated differences for all basins. Globally, in addition to a modest reduction of total storm frequency, the simulations exhibit a small, but robust eastward and poleward migration of genesis frequency in both the North Pacific and the North Atlantic Oceans. This eastward migration of storms can also be explained by changes in convection.


2013 ◽  
Vol 26 (23) ◽  
pp. 9603-9620 ◽  
Author(s):  
Ngar-Cheung Lau ◽  
Jeffrey J. Ploshay

The impacts of climate change on the North America–North Atlantic–Europe sector are studied using a coupled general circulation model: the Climate Model, version 3 (CM3) and a high-resolution atmosphere-only model, the High Resolution Atmospheric Model (HiRAM)—both developed at the Geophysical Fluid Dynamics Laboratory. The CM3 experiment is conducted under two climate change scenarios for the 1860–2100 period. The sea surface temperature (SST) forcing prescribed in the “time slice” integrations with HiRAM is derived from observations for the 1979–2008 period and projection by CM3 for the 2086–95 period. The wintertime response in the late twenty-first century is characterized by an enhancement of the positive phase of the North Atlantic Oscillation in sea level pressure (SLP) and poleward and eastward displacements of the Atlantic jet stream and storm track. The forcing pattern due to eddy vorticity fluxes in the perturbed storm track matches well with the response pattern of the SLP field in the late twenty-first century. The model results suggest that the above circulation changes are linked to the gradient of the altered SST forcing in the North Atlantic. In summer, the projected enhancement of convection over the eastern tropical Pacific is accompanied by a wave train spanning the North America–North Atlantic–Europe sector. This quasi-stationary circulation pattern is associated with diminished storm track activity at 40°–50°N and an eddy forcing pattern similar to the summertime SLP response in the late twenty-first century.


Sign in / Sign up

Export Citation Format

Share Document