Observed Decadal Changes in Downward Wave Coupling between the Stratosphere and Troposphere in the Southern Hemisphere

2011 ◽  
Vol 24 (17) ◽  
pp. 4558-4569 ◽  
Author(s):  
Nili Harnik ◽  
Judith Perlwitz ◽  
Tiffany A. Shaw

Downward wave coupling dominates the intraseasonal dynamical coupling between the stratosphere and troposphere in the Southern Hemisphere. The coupling occurs during late winter and spring when the stratospheric basic state forms a well-defined meridional waveguide, which is bounded above by a reflecting surface. This basic-state configuration is favorable for planetary wave reflection and guides the reflected waves back down to the troposphere, where they impact wave structures. In this study decadal changes in downward wave coupling are analyzed using the Modern Era Retrospective-Analysis for Research and Applications (MERRA) dataset. A cross-spectral correlation analysis, applied to geopotential height fields, and a wave geometry diagnostic, applied to zonal-mean zonal wind and temperature data, are used to understand decadal changes in planetary wave propagation. It is found that downward wave 1 coupling from September to December has increased over the last three decades, owing to significant increases at the beginning and end of this 4-month period. The increased downward wave coupling is caused by both an earlier onset of the vertically bounded meridional waveguide configuration and a persistence of this configuration into December. The latter is associated with the observed delay in vortex breakup. The results point to an additional dynamical mechanism whereby the stratosphere has influenced the tropospheric climate in the Southern Hemisphere.

2010 ◽  
Vol 23 (23) ◽  
pp. 6365-6381 ◽  
Author(s):  
Tiffany A. Shaw ◽  
Judith Perlwitz ◽  
Nili Harnik

Abstract The nature of downward wave coupling between the stratosphere and troposphere in both hemispheres is analyzed using the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) dataset. Downward wave coupling occurs when planetary waves reflected in the stratosphere impact the troposphere, and it is distinct from zonal-mean coupling, which results from wave dissipation and its subsequent impact on the zonal-mean flow. Cross-spectral correlation analysis and wave geometry diagnostics reveal that downward wave-1 coupling occurs in the presence of both a vertical reflecting surface in the mid-to-upper stratosphere and a high-latitude meridional waveguide in the lower stratosphere. In the Southern Hemisphere, downward wave coupling occurs from September to December, whereas in the Northern Hemisphere it occurs from January to March. A vertical reflecting surface is also present in the stratosphere during early winter in both hemispheres; however, it forms at the poleward edge of the meridional waveguide, which is not confined to high latitudes. The absence of a high-latitude waveguide allows meridional wave propagation into the subtropics and decreases the likelihood of downward wave coupling. The results highlight the importance of distinguishing between wave reflection in general, which requires a vertical reflecting surface, and downward wave coupling between the stratosphere and troposphere, which requires both a vertical reflecting surface and a high-latitude meridional waveguide. The relative roles of downward wave and zonal-mean coupling in the Southern and Northern Hemispheres are subsequently compared. In the Southern Hemisphere, downward wave-1 coupling dominates, whereas in the Northern Hemisphere downward wave-1 coupling and zonal-mean coupling are found to be equally important from winter to early spring. The results suggest that an accurate representation of the seasonal cycle of the wave geometry is necessary for the proper representation of downward wave coupling between the stratosphere and troposphere.


2005 ◽  
Vol 32 (23) ◽  
Author(s):  
S. E. Palo ◽  
J. M. Forbes ◽  
X. Zhang ◽  
J. M. Russell ◽  
C. J. Mertens ◽  
...  

2011 ◽  
Vol 11 (22) ◽  
pp. 11447-11453 ◽  
Author(s):  
M. M. Hurwitz ◽  
P. A. Newman ◽  
C. I. Garfinkel

Abstract. Despite the record ozone loss observed in March 2011, dynamical conditions in the Arctic stratosphere were unusual but not unprecedented. Weak planetary wave driving in February preceded cold anomalies in the polar lower stratosphere in March and a relatively late breakup of the Arctic vortex in April. La Niña conditions and the westerly phase of the quasi-biennial oscillation (QBO) were observed in March 2011. Though these conditions are generally associated with a stronger vortex in mid-winter, the respective cold anomalies do not persist through March. Therefore, the La Niña and QBO-westerly conditions cannot explain the observed cold anomalies in March 2011. In contrast, positive sea surface temperature anomalies in the North Pacific may have contributed to the unusually weak tropospheric wave driving and strong Arctic vortex in late winter 2011.


2021 ◽  
Author(s):  
Alain Hauchecorne ◽  
Chantal Claud ◽  
Philippe Keckhut

<p>Sudden Stratospheric Warming (SSW) is the most spectacular dynamic event occurring in the middle atmosphere. It can lead to a warming of the winter polar stratosphere by a few tens of K in one to two weeks and a reversal of the stratospheric circulation from wintertime prevailing westerly winds to easterly winds similar to summer conditions. This strong modification of the stratospheric circulation has consequences for several applications, including the modification of the stratospheric infrasound guide. Depending on the date of the SSW, the westerly circulation can be re-established if the SSW occurs in mid-winter or the summer easterly circulation can be definitively established if the SSW occurs in late winter. In the latter case it is called Final Warming (FW). Each year, it is possible to define the date of the FW as the date of the final inversion of the zonal wind at 60°N - 10 hPa . If the FW is associated with a strong peak of planetary wave activity and a rapid increase in polar temperature, it is classified as dynamic FW. If the transition to the easterly wind is smooth without planetary wave activity, the FW is classified as radiative.</p><p>The analysis of the ERA5 database, which has recently been extended to 1950 (71 years of data), allowed a statistical analysis of the evolution of the stratosphere in winter. The main conclusions of this study will be presented :</p><p>- the state of the polar vortex in a given month is anticorrelated with its state 2 to 3 months earlier. The beginning of winter is anticorrelated with mid-winter and mid-winter is anticorrelated with the end of winter;</p><p>- dynamic FWs occur early in the season (March - early April) and are associated with a strong positive polar temperature anomaly, while radiative FWs occur later (late April - early May) without a polar temperature anomaly;</p><p>- the summer stratosphere (polar temperature and zonal wind) keeps the memory of its state in April-May at the time of FW at least until July .</p><p>These results could help to improve medium-range weather forecasts in the Northern Hemisphere due to the strong dynamic coupling between the troposphere and stratosphere during SSW events.</p>


2013 ◽  
Vol 70 (12) ◽  
pp. 3977-3994 ◽  
Author(s):  
John R. Albers ◽  
Terrence R. Nathan

Abstract A mechanistic chemistry–dynamical model is used to evaluate the relative importance of radiative, photochemical, and dynamical feedbacks in communicating changes in lower-stratospheric ozone to the circulation of the stratosphere and lower mesosphere. Consistent with observations and past modeling studies of Northern Hemisphere late winter and early spring, high-latitude radiative cooling due to lower-stratospheric ozone depletion causes an increase in the modeled meridional temperature gradient, an increase in the strength of the polar vortex, and a decrease in vertical wave propagation in the lower stratosphere. Moreover, it is shown that, as planetary waves pass through the ozone loss region, dynamical feedbacks precondition the wave, causing a large increase in wave amplitude. The wave amplification causes an increase in planetary wave drag, an increase in residual circulation downwelling, and a weaker polar vortex in the upper stratosphere and lower mesosphere. The dynamical feedbacks responsible for the wave amplification are diagnosed using an ozone-modified refractive index; the results explain recent chemistry–coupled climate model simulations that suggest a link between ozone depletion and increased polar downwelling. The effects of future ozone recovery are also examined and the results provide guidance for researchers attempting to diagnose and predict how stratospheric climate will respond specifically to ozone loss and recovery versus other climate forcings including increasing greenhouse gas abundances and changing sea surface temperatures.


2016 ◽  
Vol 29 (18) ◽  
pp. 6425-6444 ◽  
Author(s):  
Graham R. Simpkins ◽  
Yannick Peings ◽  
Gudrun Magnusdottir

Abstract Several recent studies have connected Antarctic climate variability to tropical Atlantic sea surface temperatures (SST), proposing a Rossby wave response from the Atlantic as the primary dynamical mechanism. In this investigation, reanalysis data and atmospheric general circulation model experiments are used to further diagnose these dynamical links. Focus is placed on the possible mediating role of Pacific processes, motivated by the similar spatial characteristics of Southern Hemisphere (SH) teleconnections associated with tropical Atlantic and Pacific SST variability. During austral winter (JJA), both reanalyses and model simulations reveal that Atlantic teleconnections represent a two-mechanism process, whereby increased tropical Atlantic SST promotes two conditions: 1) an intensification of the local Atlantic Hadley circulation (HC), driven by enhanced interaction between SST anomalies and the ITCZ, that increases convergence at the descending branch, establishing anomalous vorticity forcing from which a Rossby wave emanates, expressed as a pattern of alternating positive and negative geopotential height anomalies across the SH extratropics (the so-called HC-driven components); and 2) perturbations to the zonal Walker circulation (WC), driven primarily by an SST-induced amplification, that creates a pattern of anomalous upper-level convergence across the central/western Pacific, from which an ENSO-like Rossby wave train can be triggered (the so-called WC-driven components). While the former are found to dominate, the WC-driven components play a subsidiary yet important role. Indeed, it is the superposition of these two separate but interrelated mechanisms that gives the overall observed response. By demonstrating an additional Pacific-related component to Atlantic teleconnections, this study highlights the need to consider Atlantic–Pacific interactions when diagnosing tropical-related climate variability in the SH extratropics.


2020 ◽  
Vol 38 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Xiaohua Mo ◽  
Donghe Zhang

Abstract. The present paper studies the perturbations in an equatorial ionization anomaly (EIA) region during the Southern Hemisphere (SH) sudden stratospheric warming (SSW) of 2002, using the location of EIA crests derived from global positioning system (GPS) station observations, the total electron content (TEC) obtained by the International GNSS (global navigation satellite system) Service (IGS) global ionospheric TEC map (GIMs) and the equatorial electrojet (EEJ) estimated by the geomagnetic field in the Asian sector. The results indicate the existence of an obvious quasi-10 d periodic oscillation in the location and TEC of the northern and southern EIA crest. An eastward phase progression of the quasi-10 d wave producing the SH SSW of 2002 is also identified in polar stratospheric temperature. Previous studies have shown that a strong quasi-10 d planetary wave with zonal wave numbers s=1 extended from the lower stratosphere to the mesosphere and lower thermosphere during the SH SSW of 2002 (Palo et al., 2005). Moreover, the EEJ driven by the equatorial zonal electric field exhibits quasi-10 d oscillation, suggesting the enhanced quasi-10 d planetary wave associated with SSW penetrates into the ionosphere E region and produces oscillation in the EIA region through modulating the E-region electric fields. Our results reveal some newer features of ionospheric variation that have not been reported during Northern Hemisphere (NH) SSWs.


Sign in / Sign up

Export Citation Format

Share Document