The Ancient Blue Oak Woodlands of California: Longevity and Hydroclimatic History

2013 ◽  
Vol 17 (12) ◽  
pp. 1-23 ◽  
Author(s):  
D. W. Stahle ◽  
R. D. Griffin ◽  
D. M. Meko ◽  
M. D. Therrell ◽  
J. R. Edmondson ◽  
...  

Abstract Ancient blue oak trees are still widespread across the foothills of the Coast Ranges, Cascades, and Sierra Nevada in California. The most extensive tracts of intact old-growth blue oak woodland appear to survive on rugged and remote terrain in the southern Coast Ranges and on the foothills west and southwest of Mt. Lassen. In the authors' sampling of old-growth stands, most blue oak appear to have recruited to the canopy in the middle to late nineteenth century. The oldest living blue oak tree sampled was over 459 years old, and several dead blue oak logs had over 500 annual rings. Precipitation sensitive tree-ring chronologies up to 700 years long have been developed from old blue oak trees and logs. Annual ring-width chronologies of blue oak are strongly correlated with cool season precipitation totals, streamflow in the major rivers of California, and the estuarine water quality of San Francisco Bay. A new network of 36 blue oak chronologies records spatial anomalies in growth that arise from latitudinal changes in the mean storm track and location of landfalling atmospheric rivers. These long, climate-sensitive blue oak chronologies have been used to reconstruct hydroclimatic history in California and will help to better understand and manage water resources. The environmental history embedded in blue oak growth chronologies may help justify efforts to conserve these authentic old-growth native woodlands.

2017 ◽  
Vol 94 (3) ◽  
pp. 37-61
Author(s):  
Douglas R. Littlefield

Some histories of California describe nineteenth-century efforts to reclaim the extensive swamplands and shallow lakes in the southern part of California's San Joaquin Valley – then the largest natural wetlands habitat west of the Mississippi River – as a herculean venture to tame a boggy wilderness and turn the region into an agricultural paradise. Yet an 1850s proposition for draining those marshes and lakes primarily was a scheme to improve the state's transportation. Swampland reclamation was a secondary goal. Transport around the time of statehood in 1850 was severely lacking in California. Only a handful of steamboats plied a few of the state's larger rivers, and compared to the eastern United States, roads and railroads were nearly non-existent. Few of these modes of transportation reached into the isolated San Joaquin Valley. As a result, in 1857 the California legislature granted an exclusive franchise to the Tulare Canal and Land Company (sometimes known as the Montgomery franchise, after two of the firm's founders). The company's purpose was to connect navigable canals from the southern San Joaquin Valley to the San Joaquin River, which entered from the Sierra Nevada about half way up the valley. That stream, in turn, joined with San Francisco Bay, and thus the canals would open the entire San Joaquin Valley to world-wide commerce. In exchange for building the canals, the Montgomery franchise could collect tolls for twenty years and sell half the drained swamplands (the other half was to be sold by the state). Land sales were contingent upon the Montgomery franchise reclaiming the marshes. Wetlands in the mid-nineteenth century were not viewed as they are today as fragile wildlife habitats but instead as impediments to advancing American ideals and homesteads across the continent. Moreover, marshy areas were seen as major health menaces, with the prevailing view being that swampy regions’ air carried infectious diseases.


Ecosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Margarita Huesca ◽  
Susan L. Ustin ◽  
Kristen D. Shapiro ◽  
Ryan Boynton ◽  
James H. Thorne

Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 283
Author(s):  
Burkhard Neuwirth ◽  
Inken Rabbel ◽  
Jörg Bendix ◽  
Heye R. Bogena ◽  
Boris Thies

The European heat wave of 2018 was characterized by extraordinarily dry and hot spring and summer conditions in many central and northern European countries. The average temperatures from June to August 2018 were the second highest since 1881. Accordingly, many plants, especially trees, were pushed to their physiological limits. However, while the drought and heat response of field crops and younger trees have been well investigated in laboratory experiments, little is known regarding the drought and heat response of mature forest trees. In this study, we compared the response of a coniferous and a deciduous tree species, located in western and central–western Germany, to the extreme environmental conditions during the European heat wave of 2018. Combining classic dendroecological techniques (tree–ring analysis) with measurements of the intra–annual stem expansion (dendrometers) and tree water uptake (sap flow sensors), we found contrasting responses of spruce and oak trees. While spruce trees developed a narrow tree ring in 2018 combined with decreasing correlations of daily sap flow and dendrometer parameters to the climatic parameters, oak trees developed a ring with above–average tree–ring width combined with increasing correlations between the daily climatic parameters and the parameters derived from sap flow and the dendrometer sensors. In conclusion, spruce trees reacted to the 2018 heat wave with the early completion of their growth activities, whereas oaks appeared to intensify their activities based on the water content in their tree stems.


2014 ◽  
Vol 91 (2) ◽  
pp. 20-39 ◽  
Author(s):  
Cyler Conrad ◽  
Allen Pastron

Spotting a sea turtle or Galapagos tortoise on the early wharfs and streets of San Francisco or Sacramento, California during the Gold Rush (1848-1855) would not have been a rare event. Massive population influx into the San Francisco Bay region during this time resulted in substantial impacts to native species and habitats of all taxa, but the demand for food resulted in many resources, turtles and tortoises included, being imported into the cities. Providing a fresh and delectable food source, these terrapin were brought to San Francisco and Sacramento to feed the hungry Gold Rush populous. Their taste, popularity and demand also resulted in small numbers being imported into gold mining towns in the San Joaquin Valley and foothills of the Sierra Nevada’s. Remarkable as this process was, the consumption and importation of both sea turtles and Galapagos tortoises during the Gold Rush pushed native populations of these species to the brink of extinction during the mid to late-nineteenth century. Declining numbers of terrapin and increased scientific curiosity, with a desire to safeguard these creatures for future generations, resulted in their eventually legal protection and conservation. In many ways the impacts of the decimation of terrapin in the eastern Pacific during the Gold Rush are still felt today, as conservation and breeding efforts continue in an attempt to return native turtle and tortoise populations to pre-Euro-American contact levels. This research describes the historical, and new archaeofaunal, evidence of the terrapin import market in San Francisco, Sacramento and beyond during the dynamic period of the California Gold Rush.


Fire Ecology ◽  
2012 ◽  
Vol 8 (2) ◽  
pp. 163-167 ◽  
Author(s):  
Richard B. Standiford ◽  
Ralph L. Phillips ◽  
Neil K. McDougald

Zootaxa ◽  
2007 ◽  
Vol 1524 (1) ◽  
pp. 23-34 ◽  
Author(s):  
WILLIAM A. SHEAR ◽  
WILLIAM P. LEONARD

Caseya richarti, n. sp., from King Co., Washington, USA, is described from two nearby localities in King County, Washington (state), USA. The genus Caseya Cook and Collins 1895, which now includes 25 species and subspecies, occurs from Los Angeles Co, California, USA, north through the Sierra Nevada and Coast Ranges nearly to the Canadian border. New records are given expanding the range of C. borealis Gardner and Shelley 1989 in Washington, and further new records are provided for Caseya megasoma Gardner and Shelley 1989, C. dorada (Chamberlin 1941), C. heteropa disjuncta Gardner and Shelley 1989, C. heteropa oraria Gardner and Shelley 1989, and C. heteropa montana Gardner and Shelley 1989. Additional notes are provided on gonopod nomenclature and the status of subspecies in Caseya.


2019 ◽  
Vol 58 (12) ◽  
pp. 2675-2697 ◽  
Author(s):  
Jodie Clark ◽  
Sen Chiao

AbstractThe California Baseline Ozone Transport Study (CABOTS) was a major air quality study that collected ozone measurements aloft between mid-May and mid-August of 2016. Aircraft measurements, ground-based lidar measurements, and balloon-borne ozonesondes collected precise upper-air ozone measurements across the central and Southern California valley. Utilizing daily ozonesonde data from Bodega Bay, California, and Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), reanalysis data for 25 July to 14 August 2016, three stratospheric intrusion events are identified over Northern California influencing air masses above Bodega Bay and Sacramento simultaneously. Calculated percent daily changes in afternoon ozonesonde observations indicate increasing ozone concentrations from the point of likely stratospheric air injection with the arrival of higher potential vorticity, confirmed by ensemble back trajectories. An analysis of the onsite surface monitoring ozone data indicates ozone increases in the observations for dates of plausible low-level stratospheric air influence. Further, a comparison of Bodega Bay surface ozone observations and 14 Sacramento Valley nonattainment zone surface sites show that the surface ozone observed at the higher-elevation surface sites in the lower Sierra Nevada foothills were positively correlated with elevated ozone captured by the ozonesondes within the lowest 0.5–1 km. The strongest correlations observed (~0.61) were between elevated Bodega Bay ozonesonde data and the Placerville (~612 m) afternoon surface ozone data, an indication that these regions separated by 200 km would be influence by the same ozone source. A comparison of daily changes in afternoon ozone show that the two locales often experience similar daily ozone increases or decreases. While this study leads to a basic quantification of stratospheric influence on surface ozone in the Sacramento nonattainment zone, a future campaign that examines ozone and winds aloft at both locales is suggested to improve the quantification of stratospheric ozone.


1980 ◽  
Vol 32 ◽  
pp. 247-340 ◽  
Author(s):  
T. Van Der Hammen ◽  
J. Barelds ◽  
H. De Jong ◽  
A.A. De Veer

Sign in / Sign up

Export Citation Format

Share Document