bodega bay
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 5)

H-INDEX

11
(FIVE YEARS 2)

Shore & Beach ◽  
2021 ◽  
pp. 13-25
Author(s):  
Kiki Patsch ◽  
Gary Griggs

California is a major shipping point for exports and imports across the Pacific Basin, has large commercial and recreational fisheries, and an abundance of marine recreational boaters. Each of these industries or activities requires either a port or harbor. California has 26 individual coastal ports and harbors, ranging from the huge sprawling container ports of Los Angeles and Long Beach to small fishing ports like Noyo Harbor and Bodega Bay. Almost all of California’s ports and harbors were constructed without any knowledge or consideration of littoral drift directions and rates and potential future dredging issues. Rather, they were built where a need existed, where there was a history of boat anchorage, or where there was a natural feature (e.g. bay, estuary, or lagoon) that could be the basis of an improved port or harbor. California’s littoral drift rates and directions are now well known and understood, however, and have led to the need to perform annual dredging at many of these harbors as a result of their locations (e.g. Santa Cruz, Oceanside, Santa Barbara, Ventura, and Channel Islands harbors) while other harbors require little or no annual dredging (e.g. Half Moon Bay, Moss Landing, Monterey, Redondo-King and Alamitos Bay). California’s coastal harbors can be divided into three general groups based on their long-term annual dredging volumes, which range from three harbors that have never been dredged to the Channel Islands Harbor where nearly a million cubic yards is removed on average annually. There are coastal harbors where dredging rates have remained nearly constant over time, those where rates have gradually increased, and others where rates have decreased in recent years. While the causal factors for these changes are evident in a few cases, for most there are likely a combination of reasons including changes in sand supply by updrift rivers and streams related to dam construction as well as rainfall intensity and duration; lag times between when pulses of sand added to the shoreline from large discharge events actually reach downdrift harbors; variations in wave climate over time; shoreline topography and nearshore bathymetry that determine how much sand can be trapped upcoast of littoral barriers, such as jetties and breakwaters, before it enters a harbor; and timing of dredging. While there is virtually nothing that can be done to any of these harbors to significantly reduce annual dredging rates and costs, short of modifying either breakwater or jetty length and/or configuration to increase the volume of sand trapped upcoast, thereby altering dredging timing, they are clearly major economic engines, but come with associated costs.


2019 ◽  
Vol 58 (12) ◽  
pp. 2675-2697 ◽  
Author(s):  
Jodie Clark ◽  
Sen Chiao

AbstractThe California Baseline Ozone Transport Study (CABOTS) was a major air quality study that collected ozone measurements aloft between mid-May and mid-August of 2016. Aircraft measurements, ground-based lidar measurements, and balloon-borne ozonesondes collected precise upper-air ozone measurements across the central and Southern California valley. Utilizing daily ozonesonde data from Bodega Bay, California, and Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), reanalysis data for 25 July to 14 August 2016, three stratospheric intrusion events are identified over Northern California influencing air masses above Bodega Bay and Sacramento simultaneously. Calculated percent daily changes in afternoon ozonesonde observations indicate increasing ozone concentrations from the point of likely stratospheric air injection with the arrival of higher potential vorticity, confirmed by ensemble back trajectories. An analysis of the onsite surface monitoring ozone data indicates ozone increases in the observations for dates of plausible low-level stratospheric air influence. Further, a comparison of Bodega Bay surface ozone observations and 14 Sacramento Valley nonattainment zone surface sites show that the surface ozone observed at the higher-elevation surface sites in the lower Sierra Nevada foothills were positively correlated with elevated ozone captured by the ozonesondes within the lowest 0.5–1 km. The strongest correlations observed (~0.61) were between elevated Bodega Bay ozonesonde data and the Placerville (~612 m) afternoon surface ozone data, an indication that these regions separated by 200 km would be influence by the same ozone source. A comparison of daily changes in afternoon ozone show that the two locales often experience similar daily ozone increases or decreases. While this study leads to a basic quantification of stratospheric influence on surface ozone in the Sacramento nonattainment zone, a future campaign that examines ozone and winds aloft at both locales is suggested to improve the quantification of stratospheric ozone.


Author(s):  
Richard Allen White III ◽  
Emily E. Mclachlan ◽  
Joseph P. Dunham ◽  
Aaron Garoutte ◽  
Maren L. Friesen

Paenibacillus sp. tmac-D7 was isolated from coastline growing Trifolium macraei (double-head clover) root nodules from Bodega Bay, California. The draft genome is 5,567,337 bp with a G+C% of 52.4%, an N50 of 114,261 bp, and 5,282 predicted protein-coding genes. Paenibacillus, while found in many other environments, is frequently isolated from root nodules, with many acting as plant pathogen antagonists. Paenibacillus sp. tmac-D7 is the first genome of a non-rhizobial endophyte isolate from wild Trifolium macraei (double-head clover).


2019 ◽  
Vol 20 (10) ◽  
pp. 2091-2108 ◽  
Author(s):  
Meredith A. Fish ◽  
Anna M. Wilson ◽  
F. Martin Ralph

Abstract Atmospheric rivers (ARs) can cause flooding when they are strong and stall over an already wet watershed. While earlier studies emphasized the role of individual, long-duration ARs in triggering floods, it is not uncommon for floods to be associated with a series of ARs that strike in close succession. This study uses measurements from an atmospheric river observatory at Bodega Bay (BBY), in Northern California, to identify periods when multiple AR events occurred in rapid succession. Here, an AR “event” is the period when AR conditions are present continuously at BBY. An objective method is developed to identify such periods, and the concept of “AR families” is introduced. During the period studied there were 228 AR events. Using the AR family identification method, a range of aggregation periods (the length of time allowed for ARs to be considered part of a family) was tested. For example, for an aggregation period of 5 days, there were 109 AR families, with an average of 2.7 ARs per family. Over a range of possible aggregation periods, typically there were 2–6 ARs per family. Compared to single AR events, the synoptic environment of AR families is characterized by lower geopotential heights throughout the midlatitude North Pacific, an enhanced subtropical high, and a stronger zonal North Pacific jet. Analysis of water year 2017 demonstrated a persistent geopotential height dipole throughout the North Pacific and a positive anomaly of integrated water vapor extending toward California. AR families were favored when synoptic features were semistationary.


Atmosphere ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 86 ◽  
Author(s):  
Hari Mix ◽  
Sean Reilly ◽  
Andrew Martin ◽  
Gavin Cornwell

Atmospheric rivers (ARs), and frontal systems more broadly, tend to exhibit prominent “V” shapes in time series of stable isotopes in precipitation. Despite the magnitude and widespread nature of these “V” shapes, debate persists as to whether these shifts are driven by changes in the degree of rainout, which we determine using the Rayleigh distillation of stable isotopes, or by post-condensation processes such as below-cloud evaporation and equilibrium isotope exchange between hydrometeors and surrounding vapor. Here, we present paired precipitation and water vapor isotope time series records from the 5–7 March 2016, AR in Bodega Bay, CA. The stable isotope composition of surface vapor along with independent meteorological constraints such as temperature and relative humidity reveal that rainout and post-condensation processes dominate during different portions of the event. We find that Rayleigh distillation controls during peak AR conditions (with peak rainout of 55%) while post-condensation processes have their greatest effect during periods of decreased precipitation on the margins of the event. These results and analyses inform critical questions regarding the temporal evolution of AR events and the physical processes that control them at local scales.


2018 ◽  
Vol 94 (4) ◽  
pp. 1333-1353 ◽  
Author(s):  
Grace Ha ◽  
Susan L Williams
Keyword(s):  

2017 ◽  
Vol 145 (8) ◽  
pp. 2993-3008 ◽  
Author(s):  
Raul A. Valenzuela ◽  
David E. Kingsmill

This study develops an objective method of identifying terrain-trapped airflows (TTAs) along the coast of Northern California and documenting their impact on orographic rainfall. TTAs are defined as relatively narrow air masses that consistently flow in close proximity and approximately parallel to an orographic barrier. A 13-winter-seasons dataset is employed, including observations from a 915-MHz wind profiling radar along the coast at Bodega Bay (BBY, 15 m MSL) and surface meteorology stations at BBY and in the coastal mountains at Cazadero (CZD, 478 m MSL). A subset of rainy hours exhibits a profile with enhanced vertical shear and an easterly wind maximum in the lowest 500 m MSL, roughly the same depth as the nearby coastal terrain. Both flow features have a connection to TTAs along the coast of Northern California. Based on the average orientation (320°–140°) and altitude of nearby topography, mean wind direction in the lowest 500 m MSL ([Formula: see text]) between 0°–140° is used as the initial criterion to identify TTA conditions. Application of this threshold yields a CZD/BBY rainfall ratio of 1.4 (3.2) for TTA (NO TTA) conditions. More detailed analysis of the relationship between [Formula: see text] and orographic rainfall reveals that an upper threshold of 150° more precisely divides the TTA and NO-TTA regimes. A sensitivity analysis and comparison with a TTA documented in a previous case study show that the best TTA identification criteria correspond to [Formula: see text] with a duration of at least 2 h. This objective identification method is applied to seven case studies in Part II of the present study.


2017 ◽  
Vol 5 (13) ◽  
Author(s):  
Karley M. Lujan ◽  
Jonathan A. Eisen ◽  
David A. Coil

ABSTRACT Here, we present the draft genome sequences for five bacterial strains. These strains were all isolated from seagrass (Zostera marina) collected from Bodega Bay, CA, as a part of an undergraduate research project focused on seagrass-associated microbes.


2017 ◽  
Vol 17 (2) ◽  
pp. 1491-1509 ◽  
Author(s):  
Andrew C. Martin ◽  
Gavin C. Cornwell ◽  
Samuel A. Atwood ◽  
Kathryn A. Moore ◽  
Nicholas E. Rothfuss ◽  
...  

Abstract. During the CalWater 2015 field campaign, ground-level observations of aerosol size, concentration, chemical composition, and cloud activity were made at Bodega Bay, CA, on the remote California coast. A strong anthropogenic influence on air quality, aerosol physicochemical properties, and cloud activity was observed at Bodega Bay during periods with special weather conditions, known as Petaluma Gap flow, in which air from California's interior is transported to the coast. This study applies a diverse set of chemical, cloud microphysical, and meteorological measurements to the Petaluma Gap flow phenomenon for the first time. It is demonstrated that the sudden and often dramatic change in aerosol properties is strongly related to regional meteorology and anthropogenically influenced chemical processes in California's Central Valley. In addition, it is demonstrated that the change in air mass properties from those typical of a remote marine environment to properties of a continental regime has the potential to impact atmospheric radiative balance and cloud formation in ways that must be accounted for in regional climate simulations.


2016 ◽  
Vol 17 (11) ◽  
pp. 2905-2922 ◽  
Author(s):  
David E. Kingsmill ◽  
Paul J. Neiman ◽  
Allen B. White

Abstract This study examines the impact of microphysics regime on the relationship between orographic forcing and orographic rain in the coastal mountains of Northern California using >4000 h of data from profiling Doppler radars, rain gauges, and a GPS receiver collected over 10 cool seasons. Orographic forcing is documented by hourly upslope flow, integrated water vapor (IWV), and IWV flux observed along the coast at Bodega Bay (BBY; 15 m MSL). Microphysics regime is inferred in the coastal mountains at Cazadero (CZC; 478 m MSL), where hourly periods of brightband (BB) and nonbrightband (NBB) rain are designated. BB rain is associated with a microphysics regime dominated by the seeder–feeder process while NBB rain is associated with a microphysics regime dominated by the warm-rain process. Mean BBY upslope flow, IWV, and IWV flux are ~16%, ~5%, and ~19% larger, respectively, for NBB rain compared to BB rain, while mean CZC rain rate is ~33% larger for BB rain compared to NBB rain. The orographic enhancement ratio of CZC to BBY rain rate is 3.7 during NBB rain and 2.7 during BB rain. Rain rate at CZC increases as orographic forcing at BBY increases. For a given amount of BBY orographic forcing, mean CZC rain rates are larger for BB rain compared to NBB rain. Correlation coefficients associated with the relationship between CZC rain rate and BBY orographic forcing are smaller for NBB rain relative to BB rain, but these differences are not statistically significant.


Sign in / Sign up

Export Citation Format

Share Document