scholarly journals Skill of Real-Time Seasonal ENSO Model Predictions during 2002–11: Is Our Capability Increasing?

2012 ◽  
Vol 93 (5) ◽  
pp. 631-651 ◽  
Author(s):  
Anthony G. Barnston ◽  
Michael K. Tippett ◽  
Michelle L. L'Heureux ◽  
Shuhua Li ◽  
David G. DeWitt

Real-time model predictions of ENSO conditions during the 2002–11 period are evaluated and compared to skill levels documented in studies of the 1990s. ENSO conditions are represented by the Niño- 3.4 SST index in the east-central tropical Pacific. The skills of 20 prediction models (12 dynamical, 8 statistical) are examined. Results indicate skills somewhat lower than those found for the less advanced models of the 1980s and 1990s. Using hindcasts spanning 1981–2011, this finding is explained by the relatively greater predictive challenge posed by the 2002–11 period and suggests that decadal variations in the character of ENSO variability are a greater skill-determining factor than the steady but gradual trend toward improved ENSO prediction science and models. After adjusting for the varying difficulty level, the skills of 2002–11 are slightly higher than those of earlier decades. Unlike earlier results, the average skill of dynamical models slightly, but statistically significantly, exceeds that of statistical models for start times just before the middle of the year when prediction has proven most difficult. The greater skill of dynamical models is largely attributable to the subset of dynamical models with the most advanced, highresolution, fully coupled ocean–atmosphere prediction systems using sophisticated data assimilation systems and large ensembles. This finding suggests that additional advances in skill remain likely, with the expected implementation of better physics, numeric and assimilation schemes, finer resolution, and larger ensemble sizes.

2020 ◽  
Vol 10 (19) ◽  
pp. 6791
Author(s):  
Jaehak Yu ◽  
Sejin Park ◽  
Soon-Hyun Kwon ◽  
Chee Meng Benjamin Ho ◽  
Cheol-Sig Pyo ◽  
...  

Stroke is a leading cause of disabilities in adults and the elderly which can result in numerous social or economic difficulties. If left untreated, stroke can lead to death. In most cases, patients with stroke have been observed to have abnormal bio-signals (i.e., ECG). Therefore, if individuals are monitored and have their bio-signals measured and accurately assessed in real-time, they can receive appropriate treatment quickly. However, most diagnosis and prediction systems for stroke are image analysis tools such as CT or MRI, which are expensive and difficult to use for real-time diagnosis. In this paper, we developed a stroke prediction system that detects stroke using real-time bio-signals with artificial intelligence (AI). Both machine learning (Random Forest) and deep learning (Long Short-Term Memory) algorithms were used in our system. EMG (Electromyography) bio-signals were collected in real time from thighs and calves, after which the important features were extracted, and prediction models were developed based on everyday activities. Prediction accuracies of 90.38% for Random Forest and of 98.958% for LSTM were obtained for our proposed system. This system can be considered an alternative, low-cost, real-time diagnosis system that can obtain accurate stroke prediction and can potentially be used for other diseases such as heart disease.


2021 ◽  
Vol 13 (11) ◽  
pp. 2179
Author(s):  
Pedro Mateus ◽  
Virgílio B. Mendes ◽  
Sandra M. Plecha

The neutral atmospheric delay is one of the major error sources in Space Geodesy techniques such as Global Navigation Satellite Systems (GNSS), and its modeling for high accuracy applications can be challenging. Improving the modeling of the atmospheric delays (hydrostatic and non-hydrostatic) also leads to a more accurate and precise precipitable water vapor estimation (PWV), mostly in real-time applications, where models play an important role, since numerical weather prediction models cannot be used for real-time processing or forecasting. This study developed an improved version of the Hourly Global Pressure and Temperature (HGPT) model, the HGPT2. It is based on 20 years of ERA5 reanalysis data at full spatial (0.25° × 0.25°) and temporal resolution (1-h). Apart from surface air temperature, surface pressure, zenith hydrostatic delay, and weighted mean temperature, the updated model also provides information regarding the relative humidity, zenith non-hydrostatic delay, and precipitable water vapor. The HGPT2 is based on the time-segmentation concept and uses the annual, semi-annual, and quarterly periodicities to calculate the relative humidity anywhere on the Earth’s surface. Data from 282 moisture sensors located close to GNSS stations during 1 year (2020) were used to assess the model coefficients. The HGPT2 meteorological parameters were used to process 35 GNSS sites belonging to the International GNSS Service (IGS) using the GAMIT/GLOBK software package. Results show a decreased root-mean-square error (RMSE) and bias values relative to the most used zenith delay models, with a significant impact on the height component. The HGPT2 was developed to be applied in the most diverse areas that can significantly benefit from an ERA5 full-resolution model.


1997 ◽  
Vol 31 (3) ◽  
pp. 45-51
Author(s):  
Jianmin Hou ◽  
Xuandong Li ◽  
Xiaocong Fan ◽  
Guoliang Zheng
Keyword(s):  

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1723
Author(s):  
Félix Dubuisson ◽  
Miloud Rezkallah ◽  
Hussein Ibrahim ◽  
Ambrish Chandra

In this paper, the predictive-based control with bacterial foraging optimization technique for power management in a standalone microgrid is studied and implemented. The heuristic optimization method based on the social foraging behavior of Escherichia coli bacteria is employed to determine the power references from the non-renewable energy sources and loads of the proposed configuration, which consists of a fixed speed diesel generator and battery storage system (BES). The two-stage configuration is controlled to maintain the DC-link voltage constant, regulate the AC voltage and frequency, and improve the power quality, simultaneously. For these tasks, on the AC side, the obtained power references are used as input signals to the predictive-based control. With the help of the system parameters, the predictive-based control computes all possible states of the system on the next sampling time and compares them with the estimated power references obtained using the bacterial foraging optimization (BFO) technique to get the inverter current reference. For the DC side, the same concept based on the predictive approach is employed to control the DC-DC buck-boost converter by regulating the DC-link voltage using the forward Euler method to generate the discrete-time model to predict in real-time the BES current. The proposed control strategies are evaluated using simulation results obtained with Matlab/Simulink in presence of different types of loads, as well as experimental results obtained with a small-scale microgrid.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yaghoub Dabiri ◽  
Alex Van der Velden ◽  
Kevin L. Sack ◽  
Jenny S. Choy ◽  
Julius M. Guccione ◽  
...  

AbstractAn understanding of left ventricle (LV) mechanics is fundamental for designing better preventive, diagnostic, and treatment strategies for improved heart function. Because of the costs of clinical and experimental studies to treat and understand heart function, respectively, in-silico models play an important role. Finite element (FE) models, which have been used to create in-silico LV models for different cardiac health and disease conditions, as well as cardiac device design, are time-consuming and require powerful computational resources, which limits their use when real-time results are needed. As an alternative, we sought to use deep learning (DL) for LV in-silico modeling. We used 80 four-chamber heart FE models for feed forward, as well as recurrent neural network (RNN) with long short-term memory (LSTM) models for LV pressure and volume. We used 120 LV-only FE models for training LV stress predictions. The active material properties of the myocardium and time were features for the LV pressure and volume training, and passive material properties and element centroid coordinates were features of the LV stress prediction models. For six test FE models, the DL error for LV volume was 1.599 ± 1.227 ml, and the error for pressure was 1.257 ± 0.488 mmHg; for 20 LV FE test examples, the mean absolute errors were, respectively, 0.179 ± 0.050 for myofiber, 0.049 ± 0.017 for cross-fiber, and 0.039 ± 0.011 kPa for shear stress. After training, the DL runtime was in the order of seconds whereas equivalent FE runtime was in the order of several hours (pressure and volume) or 20 min (stress). We conclude that using DL, LV in-silico simulations can be provided for applications requiring real-time results.


2004 ◽  
Author(s):  
Thomas Winsel ◽  
Mohamed Ayeb ◽  
Heinz J. Theuerkauf ◽  
Stefan Pischinger ◽  
Christof Schernus ◽  
...  
Keyword(s):  

2017 ◽  
Vol 28 (1) ◽  
pp. 309-320 ◽  
Author(s):  
Scott Powers ◽  
Valerie McGuire ◽  
Leslie Bernstein ◽  
Alison J Canchola ◽  
Alice S Whittemore

Personal predictive models for disease development play important roles in chronic disease prevention. The performance of these models is evaluated by applying them to the baseline covariates of participants in external cohort studies, with model predictions compared to subjects' subsequent disease incidence. However, the covariate distribution among participants in a validation cohort may differ from that of the population for which the model will be used. Since estimates of predictive model performance depend on the distribution of covariates among the subjects to which it is applied, such differences can cause misleading estimates of model performance in the target population. We propose a method for addressing this problem by weighting the cohort subjects to make their covariate distribution better match that of the target population. Simulations show that the method provides accurate estimates of model performance in the target population, while un-weighted estimates may not. We illustrate the method by applying it to evaluate an ovarian cancer prediction model targeted to US women, using cohort data from participants in the California Teachers Study. The methods can be implemented using open-source code for public use as the R-package RMAP (Risk Model Assessment Package) available at http://stanford.edu/~ggong/rmap/ .


Sign in / Sign up

Export Citation Format

Share Document