scholarly journals Retrieval of Cloud Microphysical Properties from MODIS and AIRS

2005 ◽  
Vol 44 (10) ◽  
pp. 1526-1543 ◽  
Author(s):  
Jun Li ◽  
Hung-Lung Huang ◽  
Chian-Yi Liu ◽  
Ping Yang ◽  
Timothy J. Schmit ◽  
...  

Abstract The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) measurements from the NASA Earth Observing System Aqua satellite enable global monitoring of the distribution of clouds during day and night. The MODIS is able to provide a high-spatial-resolution (1–5 km) cloud mask, cloud classification mask, cloud-phase mask, cloud-top pressure (CTP), and effective cloud amount during both the daytime and the nighttime, as well as cloud particle size (CPS) and cloud optical thickness (COT) at 0.55 μm during the daytime. The AIRS high-spectral-resolution measurements reveal cloud properties with coarser spatial resolution (13.5 km at nadir). Combined, MODIS and AIRS provide cloud microphysical properties during both the daytime and nighttime. A fast cloudy radiative transfer model for AIRS that accounts for cloud scattering and absorption is described in this paper. One-dimensional variational (1DVAR) and minimum-residual (MR) methods are used to retrieve the CPS and COT from AIRS longwave window region (790–970 cm−1 or 10.31–12.66 μm, and 1050–1130 cm−1 or 8.85–9.52 μm) cloudy radiance measurements. In both 1DVAR and MR procedures, the CTP is derived from the AIRS radiances of carbon dioxide channels while the cloud-phase information is derived from the collocated MODIS 1-km phase mask for AIRS CPS and COT retrievals. In addition, the collocated 1-km MODIS cloud mask refines the AIRS cloud detection in both 1DVAR and MR procedures. The atmospheric temperature profile, moisture profile, and surface skin temperature used in the AIRS cloud retrieval processing are from the European Centre for Medium-Range Weather Forecasts forecast analysis. The results from 1DVAR are compared with the operational MODIS products and MR cloud microphysical property retrieval. A Hurricane Isabel case study shows that 1DVAR retrievals have a high correlation with either the operational MODIS cloud products or MR cloud property retrievals. 1DVAR provides an efficient way for cloud microphysical property retrieval during the daytime, and MR provides the cloud microphysical property retrievals during both the daytime and nighttime.

2004 ◽  
Vol 43 (11) ◽  
pp. 1619-1634 ◽  
Author(s):  
Jun Li ◽  
W. Paul Menzel ◽  
Wenjian Zhang ◽  
Fengying Sun ◽  
Timothy J. Schmit ◽  
...  

Abstract The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS's) Aqua satellite enable global monitoring of the distribution of clouds. MODIS is able to provide a cloud mask, surface and cloud types, cloud phase, cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size, and cloud optical thickness at high spatial resolution (1–5 km). The combined MODIS–AIRS system offers the opportunity for improved cloud products, better than from either system alone; this improvement is demonstrated in this paper with both simulated and real radiances. A one-dimensional variational (1DVAR) methodology is used to retrieve the CTP and ECA from AIRS longwave (650–790 cm−1 or 15.38–12.65 μm) cloudy radiance measurements (hereinafter referred to as MODIS–AIRS 1DVAR). The MODIS–AIRS 1DVAR cloud properties show significant improvement over the MODIS-alone cloud properties and slight improvement over AIRS-alone cloud properties in a simulation study, while MODIS–AIRS 1DVAR is much more computationally efficient than the AIRS-alone 1DVAR; comparisons with radiosonde observations show that CTPs improve by 10–40 hPa for MODIS–AIRS CTPs over those from MODIS alone. The 1DVAR approach is applied to process the AIRS longwave cloudy radiance measurements; results are compared with MODIS and Geostationary Operational Environmental Satellite sounder cloud products. Data from ground-based instrumentation at the Atmospheric Radiation Measurement Program Cloud and Radiation Test Bed in Oklahoma are used for validation; results show that MODIS–AIRS improves the MODIS CTP, especially in low-level clouds. The operational use of a high-spatial-resolution imager, along with information from a high-spectral-resolution sounder will be possible with instruments planned for the next-generation geostationary operational instruments.


2018 ◽  
Vol 35 (6) ◽  
pp. 1283-1298 ◽  
Author(s):  
X. Zhuge ◽  
X. Zou ◽  
F. Weng ◽  
M. Sun

AbstractThis study compares the simulation biases of Advanced Himawari Imager (AHI) brightness temperature to observations made at night over China through the use of three land surface emissivity (LSE) datasets. The University of Wisconsin–Madison High Spectral Resolution Emissivity dataset, the Combined Advanced Spaceborne Thermal Emission and Reflection Radiometer and Moderate Resolution Imaging Spectroradiometer Emissivity database over Land High Spectral Resolution Emissivity dataset, and the International Geosphere–Biosphere Programme (IGBP) infrared LSE module, as well as land skin temperature observations from the National Basic Meteorological Observing stations in China are used as inputs to the Community Radiative Transfer Model. The results suggest that the standard deviations of AHI observations minus background simulations (OMBs) are largely consistent for the three LSE datasets. Also, negative biases of the OMBs of brightness temperature uniformly occur for each of the three datasets. There are no significant differences in OMB biases estimated with the three LSE datasets over cropland and forest surface types for all five AHI surface-sensitive channels. Over the grassland surface type, significant differences (~0.8 K) are found at the 10.4-, 11.2-, and 12.4-μm channels if using the IGBP dataset. Over nonvegetated surface types (e.g., sandy land, gobi, and bare rock), the lack of a monthly variation in IGBP LSE introduces large negative biases for the 3.9- and 8.6-μm channels, which are greater than those from the two other LSE datasets. Thus, improvements in simulating AHI infrared surface-sensitive channels can be made when using spatially and temporally varying LSE estimates.


2013 ◽  
Vol 6 (5) ◽  
pp. 1381-1396
Author(s):  
L. Millán ◽  
A. Dudhia

Abstract. Currently, most of the high-spectral-resolution infrared limb sounders use subsets of the recorded spectra (microwindows) in their retrieval schemes to reduce the computing time of rerunning the radiative transfer model. A fast linear retrieval scheme is described which allows the whole spectral signature of the target molecule to be used. We determine that pressure and temperature retrievals can be treated linearly up to a 20% difference between the atmospheric state and the linearisation point for a 3% error margin and up to 10 K "difference" for a 3 K error margin near the stratopause and less than 0.5 K elsewhere. Assuming perfect pT knowledge, CH4 retrievals can be be treated linearly up to a 20% CH4 concentration "difference" for a 2% error margin. As an example, this technique is implemented for the Michelson Interferometer for Passive Atmospheric Sounding instrument, but it is applicable to any high-resolution limb sounder.


2013 ◽  
Vol 6 (1) ◽  
pp. 105-119 ◽  
Author(s):  
J. T. Wiensz ◽  
D. A. Degenstein ◽  
N. D. Lloyd ◽  
A. E. Bourassa

Abstract. We present a technique for estimating the optical thickness of subvisual cirrus clouds detected by OSIRIS (Optical Spectrograph and Infrared Imaging System), a limb-viewing satellite instrument that measures scattered radiances from the UV to the near-IR. The measurement set is composed of a ratio of limb radiance profiles at two wavelengths that indicates the presence of cloud-scattering regions. Cross-sections and phase functions from an in situ database are used to simulate scattering by cloud-particles. With appropriate configurations discussed in this paper, the SASKTRAN successive-orders of scatter radiative transfer model is able to simulate accurately the in-cloud radiances from OSIRIS. Configured in this way, the model is used with a multiplicative algebraic reconstruction technique (MART) to retrieve the cloud extinction profile for an assumed effective cloud particle size. The sensitivity of these retrievals to key auxiliary model parameters is shown, and it is shown that the retrieved extinction profile, for an assumed effective cloud particle size, models well the measured in-cloud radiances from OSIRIS. The greatest sensitivity of the retrieved optical thickness is to the effective cloud particle size. Since OSIRIS has an 11-yr record of subvisual cirrus cloud detections, the work described in this manuscript provides a very useful method for providing a long-term global record of the properties of these clouds.


2013 ◽  
Vol 70 (1) ◽  
pp. 317-329 ◽  
Author(s):  
M. Sikand ◽  
J. Koskulics ◽  
K. Stamnes ◽  
B. Hamre ◽  
J. J. Stamnes ◽  
...  

Abstract Microphysical and radiative measurements in boundary layer mixed-phase clouds (MPCs), consisting of ice crystals and liquid droplets, have been analyzed. These cloud measurements were collected during a May–June 2008 tethered-balloon campaign in Ny-Ålesund, Norway, located at 78.9°N, 11.9°E in the High Arctic. The instruments deployed on the tethered-balloon platform included a radiometer, a cloud particle imager (CPI), and a meteorological package. To analyze the data, a radiative transfer model (RTM) was constructed with two cloud layers—consistent with the CPI data—embedded in a background Rayleigh scattering atmosphere. The mean intensities estimated from the radiometer measurements on the balloon were used in conjunction with the RTM to quantify the vertical structure of the MPC system, while the downward irradiances measured by an upward-looking ground-based radiometer were used to constrain the total cloud optical depth. The time series of radiometer and CPI data obtained while profiling the cloud system was used to estimate the time evolution of the liquid water and ice particle optical depths as well as the vertical location of the two cloud layers.


2015 ◽  
Vol 8 (3) ◽  
pp. 3357-3397 ◽  
Author(s):  
D. J. Zawada ◽  
S. R. Dueck ◽  
L. A. Rieger ◽  
A. E. Bourassa ◽  
N. D. Lloyd ◽  
...  

Abstract. The OSIRIS instrument on board the Odin spacecraft has been measuring limb scattered radiance since 2001. The vertical radiance profiles measured as the instrument nods are inverted, with the aid of the SASKTRAN radiative transfer model, to obtain vertical profiles of trace atmospheric constituents. Here we describe two newly developed modes of the SASKTRAN radiative transfer model: a high spatial resolution mode, and a Monte Carlo mode. The high spatial resolution mode is a successive orders model capable of modelling the multiply scattered radiance when the atmosphere is not spherically symmetric; the Monte Carlo mode is intended for use as a highly accurate reference model. It is shown that the two models agree in a wide variety of solar conditions to within 0.2%. As an example case for both models, Odin-OSIRIS scans were simulated with the Monte Carlo model and retrieved using the high resolution model. A systematic bias of up to 4% in retrieved ozone number density between scans where the instrument is scanning up or scanning down was identified. It was found that calculating the multiply scattered diffuse field at five discrete solar zenith angles is sufficient to eliminate the bias for typical Odin-OSIRIS geometries.


2013 ◽  
Vol 6 (1) ◽  
pp. 721-766
Author(s):  
L. Millán ◽  
A. Dudhia

Abstract. Currently most of the high spectral resolution infrared limb sounders use subsets of the recorded spectra (microwindows) in their retrieval schemes to reduce the computing time of rerunning the radiative transfer model. A fast linear retrieval scheme is described which allows the whole spectral signature of the target molecule to be used. We determine how close the linearisation point needs to be to the solution in order to fall in the linear regime and also suggest an adjustment to the forward model and Jacobians to propagate the change in pressure and temperature on the gas concentration retrievals. As an example, this technique is implemented for the Michelson Interferometer for Passive Atmospheric Sounding instrument, but it is applicable to any high resolution limb sounder.


2013 ◽  
Vol 52 (3) ◽  
pp. 710-726 ◽  
Author(s):  
Chenxi Wang ◽  
Ping Yang ◽  
Steven Platnick ◽  
Andrew K. Heidinger ◽  
Bryan A. Baum ◽  
...  

AbstractA computationally efficient high-spectral-resolution cloudy-sky radiative transfer model (HRTM) in the thermal infrared region (700–1300 cm−1, 0.1 cm−1 spectral resolution) is advanced for simulating the upwelling radiance at the top of atmosphere and for retrieving cloud properties. A precomputed transmittance database is generated for simulating the absorption contributed by up to seven major atmospheric absorptive gases (H2O, CO2, O3, O2, CH4, CO, and N2O) by using a rigorous line-by-line radiative transfer model (LBLRTM). Both the line absorption of individual gases and continuum absorption are included in the database. A high-spectral-resolution ice particle bulk scattering properties database is employed to simulate the radiation transfer within a vertically nonisothermal ice cloud layer. Inherent to HRTM are sensor spectral response functions that couple with high-spectral-resolution measurements in the thermal infrared regions from instruments such as the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer. When compared with the LBLRTM and the discrete ordinates radiative transfer model (DISORT), the root-mean-square error of HRTM-simulated single-layer cloud brightness temperatures in the thermal infrared window region is generally smaller than 0.2 K. An ice cloud optical property retrieval scheme is developed using collocated AIRS and Moderate Resolution Imaging Spectroradiometer (MODIS) data. A retrieval method is proposed to take advantage of the high-spectral-resolution instrument. On the basis of the forward model and retrieval method, a case study is presented for the simultaneous retrieval of ice cloud optical thickness τ and effective particle size Deff that includes a cloud-top-altitude self-adjustment approach to improve consistency with simulations.


Author(s):  
S. Jay ◽  
R. Bendoula ◽  
X. Hadoux ◽  
N. Gorretta

Most methods for retrieving foliar content from hyperspectral data are well adapted either to remote-sensing scale, for which each spectral measurement has a spatial resolution ranging from a few dozen centimeters to a few hundred meters, or to leaf scale, for which an integrating sphere is required to collect the spectral data. In this study, we present a method for estimating leaf optical properties from hyperspectral images having a spatial resolution of a few millimeters or centimeters. In presence of a single light source assumed to be directional, it is shown that leaf hyperspectral measurements can be related to the directional hemispherical reflectance simulated by the PROSPECT radiative transfer model using two other parameters. The first one is a multiplicative term that is related to local leaf angle and illumination zenith angle. The second parameter is an additive specular-related term that models BRDF effects. <br><br> Our model was tested on visible and near infrared hyperspectral images of leaves of various species, that were acquired under laboratory conditions. Introducing these two additional parameters into the inversion scheme leads to improved estimation results of PROSPECT parameters when compared to original PROSPECT. In particular, the RMSE for local chlorophyll content estimation was reduced by 21% (resp. 32%) when tested on leaves placed in horizontal (resp. sloping) position. Furthermore, inverting this model provides interesting information on local leaf angle, which is a crucial parameter in classical remote-sensing.


2016 ◽  
Author(s):  
Giuliano Liuzzi ◽  
Guido Masiello ◽  
Carmine Serio ◽  
Daniela Meloni ◽  
Claudia Di Biagio ◽  
...  

Abstract. In the context of the ChArMEx campaign, we present here some results concerning the quantitative comparison between simulated and observed radiances during a dust event occurred between June and July 2013 in the southern Mediterranean basin, involving the airmass above Lampedusa island. In particular, comparisons have been performed between radiances as observed by the Infrared Atmospheric Sounder Interferometer (IASI) and those simulated using the σ-IASI-as radiative transfer model, which takes into account aerosol extinction effect through a set of fast parameterizations. Simulations have been carried on with different sets of input complex refractive indices, which take into account the parent soils of the aerosols, and using the high-quality characterization of desert dust aerosol microphysical properties, achieved through direct measurements in the ChArMEx experiment; on the one hand, this comparison has offered the possibility to test the feasibility of the radiative transfer model. On the other hand, this work goes through a direct validation of different refractive indices sets for desert dust in the thermal infrared. Results show a good consistency between calculations and observations, especially in the spectral interval 800–1000 cm−1; moreover, the comparison between calculations and observations suggests that further efforts are needed to better characterize desert dust optical properties in the short wave (above 2000 cm−1). In any case, we show that it is necessary to properly tune the refractive indices according to the geographical origin of the observed aerosol.


Sign in / Sign up

Export Citation Format

Share Document