scholarly journals Turbulence and Radiation in Stratocumulus-Topped Marine Boundary Layers: A Case Study from VOCALS-REx

2014 ◽  
Vol 53 (1) ◽  
pp. 117-135 ◽  
Author(s):  
Virendra P. Ghate ◽  
Bruce A. Albrecht ◽  
Mark A. Miller ◽  
Alan Brewer ◽  
Christopher W. Fairall

AbstractObservations made during a 24-h period as part of the Variability of the American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS-REx) are analyzed to study the radiation and turbulence associated with the stratocumulus-topped marine boundary layer (BL). The first 14 h exhibited a well-mixed (coupled) BL with an average cloud-top radiative flux divergence of ~130 W m−2; the BL was decoupled during the last 10 h with negligible radiative flux divergence. The averaged radiative cooling very close to the cloud top was −9.04 K h−1 in coupled conditions and −3.85 K h−1 in decoupled conditions. This is the first study that combined data from a vertically pointing Doppler cloud radar and a Doppler lidar to yield the vertical velocity structure of the entire BL. The averaged vertical velocity variance and updraft mass flux during coupled conditions were higher than those during decoupled conditions at all levels by a factor of 2 or more. The vertical velocity skewness was negative in the entire BL during coupled conditions, whereas it was weakly positive in the lower third of the BL and negative above during decoupled conditions. A formulation of velocity scale is proposed that includes the effect of cloud-top radiative cooling in addition to the surface buoyancy flux. When scaled by the velocity scale, the vertical velocity variance and coherent downdrafts had similar magnitude during the coupled and decoupled conditions. The coherent updrafts that exhibited a constant profile in the entire BL during both the coupled and decoupled conditions scaled well with the convective velocity scale to a value of ~0.5.

2007 ◽  
Vol 46 (9) ◽  
pp. 1469-1479 ◽  
Author(s):  
S. W. Hoch ◽  
P. Calanca ◽  
R. Philipona ◽  
A. Ohmura

Abstract Longwave radiative flux divergence within the lowest 50 m of the atmospheric boundary layer was observed during the Eidgenössische Technische Hochschule (ETH) Greenland Summit experiment. The dataset collected at 72°35′N, 38°30′W, 3203 m MSL is based on longwave radiation measurements at 2 and 48 m that are corrected for the influence of the supporting tower structure. The observations cover all seasons and reveal the magnitude of longwave radiative flux divergence and its incoming and outgoing component under stable and unstable conditions. Longwave radiative flux divergence during winter corresponds to a radiative cooling of −10 K day−1, but values of −30 K day−1 can persist for several days. During summer, the mean cooling effect of longwave radiative flux divergence is small (−2 K day−1) but exhibits a strong diurnal cycle. With values ranging from −35 K day−1 around midnight to 15 K day−1 at noon, the heating rate due to longwave radiative flux divergence is of the same order of magnitude as the observed temperature tendency. However, temperature tendency and longwave radiative flux divergence are out of phase, with temperature tendency leading the longwave radiative flux divergence by 3 h. The vertical variation of the outgoing longwave flux usually dominates the net longwave flux divergence, showing a strong divergence at nighttime and a strong convergence during the day. The divergence of the incoming longwave flux plays a secondary role, showing a slight counteracting effect. Fog is frequently observed during summer nights. Under such conditions, a divergence of both incoming and outgoing fluxes leads to the strongest radiative cooling rates that are observed. Considering all data, a correlation between longwave radiative flux divergence and the temperature difference across the 2–48-m layer is found.


2020 ◽  
Vol 77 (2) ◽  
pp. 465-478 ◽  
Author(s):  
Nadir Jeevanjee ◽  
Stephan Fueglistaler

Abstract The cooling-to-space (CTS) approximation says that the radiative cooling of an atmospheric layer is dominated by that layer’s emission to space, while radiative exchange with layers above and below largely cancel. Though the CTS approximation has been demonstrated empirically and is thus fairly well accepted, a theoretical justification is lacking. Furthermore, the intuition behind the CTS approximation cannot be universally valid, as the CTS approximation fails in the case of pure radiative equilibrium. Motivated by this, we investigate the CTS approximation in detail. We frame the CTS approximation in terms of a novel decomposition of radiative flux divergence, which better captures the cancellation of exchange terms. We also derive validity criteria for the CTS approximation, using simple analytical theory. We apply these criteria in the context of both gray gas pure radiative equilibrium (PRE) and radiative–convective equilibrium (RCE) to understand how the CTS approximation arises and why it fails in PRE. When applied to realistic gases in RCE, these criteria predict that the CTS approximation should hold well for H2O but less so for CO2, a conclusion we verify with line-by-line radiative transfer calculations. Along the way we also discuss the well-known “τ = 1 law,” and its dependence on the choice of vertical coordinate.


2018 ◽  
Vol 48 (11) ◽  
pp. 2737-2759
Author(s):  
Yutaka Yoshikawa ◽  
Yasuyuki Baba ◽  
Hideaki Mizutani ◽  
Teruhiro Kubo ◽  
Chikara Shimoda

AbstractSeveral features of Langmuir turbulence remain unquantified despite its potentially large impacts on ocean surface mixing. For example, its vertical velocity variance, expected to be proportional to based on numerical simulations, was proportional to in recent field observations, where is the friction velocity and is surface Stokes velocity. To investigate unquantified features of Langmuir turbulence, we conducted a field experiment around a marine observation tower in a shallow sea off the southern coast of Japan in early winter when winds and waves (often swells) were often misaligned. Coherent structures similar to Langmuir cells were successfully identified in the horizontal and vertical structures of turbulent flows measured with upward- and horizontally looking acoustic Doppler current profilers (ADCPs). ADCPs and several anemometers attached at the tower showed that turbulent vertical velocity variance was large when the Langmuir number and Hoenikker number (; where B is surface buoyancy flux and H is the water depth) were both small and that the orientation of the cells was generally aligned in the direction of Lagrangian current shear. These results agree well with the previous numerical results. As in the previous observations, however, the vertical velocity variance appeared to be proportional to . In our experiment, this curious feature was explained by compensatory effects between waves and convection. Misaligned wind with waves also seems to characterize the observed Langmuir turbulence, though further quantitative analysis is required to confirm this result.


Tellus ◽  
1968 ◽  
Vol 20 (2) ◽  
pp. 294-299
Author(s):  
Wilford G. Zdunkowski ◽  
Larry L. Stowe

2005 ◽  
Vol 18 (17) ◽  
pp. 3587-3605 ◽  
Author(s):  
William B. Rossow ◽  
Yuanchong Zhang ◽  
Junhong Wang

Abstract To diagnose how cloud processes feed back on weather- and climate-scale variations of the atmosphere requires determining the changes that clouds produce in the atmospheric diabatic heating by radiation and precipitation at the same scales of variation. In particular, not only the magnitude of these changes must be quantified but also their correlation with atmospheric temperature variations; hence, the space–time resolution of the cloud perturbations must be sufficient to account for the majority of these variations. Although extensive new global cloud and radiative flux datasets have recently become available, the vertical profiles of clouds and consequent radiative flux divergence have not been systematically measured covering weather-scale variations from about 100 km, 3 h up to climate-scale variations of 10 000 km, decadal inclusive. By combining the statistics of cloud layer occurrence from the International Satellite Cloud Climatology Project (ISCCP) and an analysis of radiosonde humidity profiles, a statistical model has been developed that associates each cloud type, recognizable from satellite measurements, with a particular cloud vertical structure. Application of this model to the ISCCP cloud layer amounts produces estimates of low-level cloud amounts and average cloud-base pressures that are quantitatively closer to observations based on surface weather observations, capturing the variations with latitude and season and land and ocean (results are less good in the polar regions). The main advantage of this statistical model is that the correlations of cloud vertical structure with meteorology are qualitatively similar to “classical” information relating cloud properties to weather. These results can be evaluated and improved with the advent of satellites that can directly probe cloud vertical structures over the globe, providing statistics with changing meteorological conditions.


Author(s):  
Ewa Jarosz ◽  
Hemantha W. Wijesekera ◽  
David W. Wang

AbstractVelocity, hydrographic, and microstructure observations collected under moderate to high winds, large surface waves, and significant ocean-surface heat losses were utilized to examine coherent velocity structures (CVS) and turbulent kinetic energy (TKE) budget in the mixed layer on the outer shelf in the northern Gulf of Mexico in February 2017. The CVS exhibited larger downward velocities in downweling regions and weaker upward velocities in broader upwelling regions, elevated vertical velocity variance, vertical velocity maxima in the upper part of the mixed layer, and phasing of crosswind velocities relative to vertical velocities near the base of the mixed layer. Temporal scales ranged from 10 min to 40 min and estimated lateral scales ranged from 90 m to 430 m, which were 1.5 – 6 times larger than the mixed layer depth. Nondimensional parameters, Langmuir and Hoenikker numbers, indicated that plausible forcing mechanisms were surface-wave driven Langmuir vortex and destabilizing surface buoyancy flux. The rate of change of TKE, shear production, Stokes production, buoyancy production, vertical transport of TKE, and dissipation in the TKE budget were evaluated. The shear and Stokes productions, dissipation, and vertical transport of TKE were the dominant terms. The buoyancy production term was important at the sea surface, but it decreased rapidly in the interior. A large imbalance term was found under the unstable, high wind, and high-sea state conditions. The cause of this imbalance cannot be determined with certainty through analyses of the available observations; however, our speculation is that the pressure transport is significant under these conditions.


2020 ◽  
Vol 12 (9) ◽  
pp. 1533 ◽  
Author(s):  
Tao Huang ◽  
Steve Hung-lam Yim ◽  
Yuanjian Yang ◽  
Olivia Shuk-ming Lee ◽  
David Hok-yin Lam ◽  
...  

Turbulent mixing is critical in affecting urban climate and air pollution. Nevertheless, our understanding of it, especially in a cloud-topped boundary layer (CTBL), remains limited. High-temporal resolution observations provide sufficient information of vertical velocity profiles, which is essential for turbulence studies in the atmospheric boundary layer (ABL). We conducted Doppler Light Detection and Ranging (LiDAR) measurements in 2019 using the 3-Dimensional Real-time Atmospheric Monitoring System (3DREAMS) to reveal the characteristics of typical daytime turbulent mixing processes in CTBL over Hong Kong. We assessed the contribution of cloud radiative cooling on turbulent mixing and determined the altitudinal dependence of the contribution of surface heating and vertical wind shear to turbulent mixing. Our results show that more downdrafts and updrafts in spring and autumn were observed and positively associated with seasonal cloud fraction. These results reveal that cloud radiative cooling was the main source of downdraft, which was also confirmed by our detailed case study of vertical velocity. Compared to winter and autumn, cloud base heights were lower in spring and summer. Cloud radiative cooling contributed ~32% to turbulent mixing even near the surface, although the contribution was relatively weaker compared to surface heating and vertical wind shear. Surface heating and vertical wind shear together contributed to ~45% of turbulent mixing near the surface, but wind shear can affect up to ~1100 m while surface heating can only reach ~450 m. Despite the fact that more research is still needed to further understand the processes, our findings provide useful references for local weather forecast and air quality studies.


Sign in / Sign up

Export Citation Format

Share Document