scholarly journals A MODIS-Based Global 1-km Maximum Green Vegetation Fraction Dataset

2014 ◽  
Vol 53 (8) ◽  
pp. 1996-2004 ◽  
Author(s):  
Patrick D. Broxton ◽  
Xubin Zeng ◽  
William Scheftic ◽  
Peter A. Troch

AbstractGlobal land-cover data are widely used in regional and global models because land cover influences land–atmosphere exchanges of water, energy, momentum, and carbon. Many models use data of maximum green vegetation fraction (MGVF) to describe vegetation abundance. MGVF products have been created in the past using different methods, but their validation with ground sites is difficult. Furthermore, uncertainty is introduced because many products use a single year of satellite data. In this study, a global 1-km MGVF product is developed on the basis of a “climatology” of data of Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index and land-cover type, which removes biases associated with unusual greenness and inaccurate land-cover classification for individual years. MGVF shows maximum annual variability from 2001 to 2012 for intermediate values of average MGVF, and the standard deviation of MGVF normalized by its mean value decreases nearly monotonically as MGVF increases. In addition, there are substantial differences between this climatology and MGVF data from the MODIS Continuous Fields (CF) Collection 3, which is currently used in the Community Land Model. Although the CF data only use 2001 MODIS data, many of these differences cannot be explained by usage of different years of data. In particular, MGVF as based on CF data is usually higher than that based on the MODIS climatology from this paper. It is difficult to judge which product is more realistic because of a lack of ground truth, but this new MGVF product is more consistent than the CF data with the MODIS leaf area index product (which is also used to describe vegetation abundance in models).

2021 ◽  
Vol 13 (4) ◽  
pp. 719
Author(s):  
Xiuxia Li ◽  
Shunlin Liang ◽  
Huaan Jin

Leaf area index (LAI) and normalized difference vegetation index (NDVI) are key parameters for various applications. However, due to sensor tradeoff and cloud contaminations, these data are often temporally intermittent and spatially discontinuous. To address the discontinuities, this study proposed a method based on spectral matching of 30 m discontinuous values from Landsat data and 500 m temporally continuous values from Moderate-resolution Imaging Spectroradiometer (MODIS) data. Experiments have proven that the proposed method can effectively yield spatiotemporally continuous vegetation products at 30 m spatial resolution. The results for three different study areas with NDVI and LAI showed that the method performs well in restoring the time series, fills in the missing data, and reasonably predicts the images. Remarkably, the proposed method could address the issue when no cloud-free data pairs are available close to the prediction date, because of the temporal information “borrowed” from coarser resolution data. Hence, the proposed method can make better use of partially obscured images. The reconstructed spatiotemporally continuous data have great potential for monitoring vegetation, agriculture, and environmental dynamics.


2005 ◽  
Vol 62 (3) ◽  
pp. 199-207 ◽  
Author(s):  
Maurício dos Santos Simões ◽  
Jansle Vieira Rocha ◽  
Rubens Augusto Camargo Lamparelli

Spectral information is well related with agronomic variables and can be used in crop monitoring and yield forecasting. This paper describes a multitemporal research with the sugarcane variety SP80-1842, studying its spectral behavior using field spectroscopy and its relationship with agronomic parameters such as leaf area index (LAI), number of stalks per meter (NPM), yield (TSS) and total biomass (BMT). A commercial sugarcane field in Araras/SP/Brazil was monitored for two seasons. Radiometric data and agronomic characterization were gathered in 9 field campaigns. Spectral vegetation indices had similar patterns in both seasons and adjusted to agronomic parameters. Band 4 (B4), Simple Ratio (SR), Normalized Difference Vegetation Index (NDVI), and Soil Adjusted Vegetation Index (SAVI) increased their values until the end of the vegetative stage, around 240 days after harvest (DAC). After that stage, B4 reflectance and NDVI values began to stabilize and decrease because the crop reached ripening and senescence stages. Band 3 (B3) and RVI presented decreased values since the beginning of the cycle, followed by a stabilization stage. Later these values had a slight increase caused by the lower amount of green vegetation. Spectral variables B3, RVI, NDVI, and SAVI were highly correlated (above 0.79) with LAI, TSS, and BMT, and about 0.50 with NPM. The best regression models were verified for RVI, LAI, and NPM, which explained 0.97 of TSS variation and 0.99 of BMT variation.


2019 ◽  
Vol 11 (15) ◽  
pp. 4035 ◽  
Author(s):  
Kanat Samarkhanov ◽  
Jilili Abuduwaili ◽  
Alim Samat ◽  
Gulnura Issanova

In this study, the spatial and temporal patterns of the land cover were monitored within the Qazaly irrigation zone located in the deltaic zone of the Syrdarya river in the surroundings of the former Aral Sea. A 16-day MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua NDVI (Normalized Difference Vegetation Index) data product with a spatial resolution of 250 meters was used for this purpose, covering the period between 2003 and 2018. Field survey results obtained in 2018 were used to build a sample dataset. The random forests supervised classification machine learning algorithm was used to map land cover, which produced good results with an overall accuracy of about 0.8. Statistics on land cover change were calculated and analyzed. The correctness of obtained classes was checked with Landsat 8 (OLI, The Operational Land Imager) images. Detailed land cover maps, including rice cropland, were derived. During the observation period, the rice croplands increased, while the generally irrigated area decreased.


2019 ◽  
Vol 11 (13) ◽  
pp. 1517 ◽  
Author(s):  
Yepei Chen ◽  
Kaimin Sun ◽  
Chi Chen ◽  
Ting Bai ◽  
Taejin Park ◽  
...  

Leaf area index (LAI) and fraction of photosynthetically active radiation (FPAR) absorbed by vegetation are two of the essential biophysical variables used in most global models of climate, hydrology, biogeochemistry, and ecology. Most LAI/FPAR products are retrieved from non-geostationary satellite observations. Long revisit times and cloud/cloud shadow contamination lead to temporal and spatial gaps in such LAI/FPAR products. For more effective use in monitoring of vegetation phenology, climate change impacts, disaster trend etc., in a timely manner, it is critical to generate LAI/FPAR with less cloud/cloud shadow contamination and at higher temporal resolution—something that is feasible with geostationary satellite data. In this paper, we estimate the geostationary Himawari-8 Advanced Himawari Imager (AHI) LAI/FPAR fields by training artificial neural networks (ANNs) with Himawari-8 normalized difference vegetation index (NDVI) and moderate resolution imaging spectroradiometer (MODIS) LAI/FPAR products for each biome type. Daily cycles of the estimated AHI LAI/FPAR products indicate that these are stable at 10-min frequency during the day. Comprehensive evaluations were carried out for the different biome types at different spatial and temporal scales by utilizing the MODIS LAI/FPAR products and the available field measurements. These suggest that the generated Himawari-8 AHI LAI/FPAR fields were spatially and temporally consistent with the benchmark MODIS LAI/FPAR products. We also evaluated the AHI LAI/FPAR products for their potential to accurately monitor the vegetation phenology—the results show that AHI LAI/FPAR products closely match the phenological development captured by the MODIS products.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Lahouari Bounoua ◽  
Ping Zhang ◽  
Kurtis Thome ◽  
Jeffrey Masek ◽  
Abdelmounaime Safia ◽  
...  

In terms of the space cities occupy, urbanization appears as a minor land transformation. However, it permanently modifies land’s ecological functions, altering its carbon, energy, and water fluxes. It is therefore necessary to develop a land cover characterization at fine spatial and temporal scales to capture urbanization’s effects on surface fluxes. We develop a series of biophysical vegetation parameters such as the fraction of photosynthetically active radiation, leaf area index, vegetation greenness fraction, and roughness length over the continental US using MODIS and Landsat products for 2001. A 13-class land cover map was developed at a climate modeling grid (CMG) merging the 500 m MODIS land cover and the 30 m impervious surface area from the National Land Cover Database. The landscape subgrid heterogeneity was preserved using fractions of each class from the 500 m and 30 m into the CMG. Biophysical parameters were computed using the 8-day composite Normalized Difference Vegetation Index produced by the North American Carbon Program. In addition to urban impact assessments, this dataset is useful for the computation of surface fluxes in land, vegetation, and urban models and is expected to be widely used in different land cover and land use change applications.


2020 ◽  
Vol 48 (3) ◽  
pp. 1667-1682
Author(s):  
Artan HYSA ◽  
Zydi TEQJA

Extreme weather conditions characterized by increased peak temperatures and stretched draught seasons are expected to boost up wildfire vulnerability in Mediterranean countries such as Albania. Thus, estimations about wildfire spread capacities of the territory are crucial. In this paper we introduce four new parameters into the indexing method for classifying the forested lands by their wildfire spreading capacity (WSCI). Land cover type via Corine Land Cover (CLC), Plant heat zones, Tree cover density (TCD), and Normalized difference vegetation index (NDVI) are integrated along with the previous set of criteria. The analytical steps of the process are performed in QGIS software including the Semi-Automatic Classification Plugin (SCP) which is useful in calculating NDVI values. The diversity among the inventory values of the selected criteria urges for a normalizing procedure within QGIS. Besides, each criterion is foreseen to have a specific impact on the WSCI value, which is weighted via Analytic Hierarchy Process (AHP). The sum of the products of the normalized class and the weighted impact factor of each criterion generates the WSCI value. The validation relies on the comparison between the index values of points being located within the burned areas and the values of the remaining locations. The results have shown that the former set of points have higher WSCI mean value then the latter group of points. Lastly, the parametric vulnerability assessment method presented here enables useful materials in support of wildfire risk reduction within the national priorities of disaster risk management and fire safety agendas in Albania. 


2020 ◽  
Vol 52 (2) ◽  
pp. 239
Author(s):  
Tofan Agung Eka Prasetya ◽  
Munawar Munawar ◽  
Muhammad Rifki Taufik ◽  
Sarawuth Chesoh ◽  
Apiradee Lim ◽  
...  

Land Surface Temperature (LST) assessment can explain temperature variation, which may be influenced by factors such as elevation, land cover, and the normalized difference vegetation index (NDVI). In this study, a multiple linear regression model of LST variation was constructed based on data from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra satellite, relating to the period, 2000-2018. The highest LST variation of nearly 1.3 °C/decade was found in savanna areas while the lowest variation was in the evergreen broadleaf forest and woody savanna, which experienced a decrease of 2.1 °C/decade. The overall mean change of LST was -0.4 °C/decade and the regression model with LST as the dependent variable and elevation, land cover type, and NVDI as independent variables produced an R square of 0.376. The variation in LST was different depending upon the NDVI.


Technologies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 40
Author(s):  
Guang Yang ◽  
Yuntao Ma ◽  
Jiaqi Hu

The boundary of urban built-up areas is the baseline data of a city. Rapid and accurate monitoring of urban built-up areas is the prerequisite for the boundary control and the layout of urban spaces. In recent years, the night light satellite sensors have been employed in urban built-up area extraction. However, the existing extraction methods have not fully considered the properties that directly reflect the urban built-up areas, like the land surface temperature. This research first converted multi-source data into a uniform projection, geographic coordinate system and resampling size. Then, a fused variable that integrated the Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) night light images, the Moderate-resolution Imaging Spectroradiometer (MODIS) surface temperature product and the normalized difference vegetation index (NDVI) product was designed to extract the built-up areas. The fusion results showed that the values of the proposed index presented a sharper gradient within a smaller spatial range, compared with the only night light images. The extraction results were tested in both the area sizes and the spatial locations. The proposed index performed better in both accuracies (average error rate 1.10%) and visual perspective. We further discussed the regularity of the optimal thresholds in the final boundary determination. The optimal thresholds of the proposed index were more stable in different cases on the premise of higher accuracies.


2021 ◽  
Vol 13 (6) ◽  
pp. 1131
Author(s):  
Tao Yu ◽  
Pengju Liu ◽  
Qiang Zhang ◽  
Yi Ren ◽  
Jingning Yao

Detecting forest degradation from satellite observation data is of great significance in revealing the process of decreasing forest quality and giving a better understanding of regional or global carbon emissions and their feedbacks with climate changes. In this paper, a quick and applicable approach was developed for monitoring forest degradation in the Three-North Forest Shelterbelt in China from multi-scale remote sensing data. Firstly, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Ratio Vegetation Index (RVI), Leaf Area Index (LAI), Fraction of Photosynthetically Active Radiation (FPAR) and Net Primary Production (NPP) from remote sensing data were selected as the indicators to describe forest degradation. Then multi-scale forest degradation maps were obtained by adopting a new classification method using time series MODerate Resolution Imaging Spectroradiometer (MODIS) and Landsat Enhanced Thematic Mapper Plus (ETM+) images, and were validated with ground survey data. At last, the criteria and indicators for monitoring forest degradation from remote sensing data were discussed, and the uncertainly of the method was analyzed. Results of this paper indicated that multi-scale remote sensing data have great potential in detecting regional forest degradation.


Sign in / Sign up

Export Citation Format

Share Document