scholarly journals Further Improvement of the Heavy Orographic Rainfall Retrievals in the GSMaP Algorithm for Microwave Radiometers

2017 ◽  
Vol 56 (9) ◽  
pp. 2607-2619 ◽  
Author(s):  
Munehisa K. Yamamoto ◽  
Shoichi Shige ◽  
Cheng-Ku Yu ◽  
Lin-Wen Cheng

AbstractAn orographic/nonorographic rainfall classification scheme has been introduced for the operational algorithm of the Global Satellite Mapping of Precipitation (GSMaP) for passive microwave radiometers. However, problems of overestimations and false alarms of heavy orographic rainfall remain unresolved. This is because the current scheme selected lower constant thresholds of orographic rainfall conditions for global application and used values of orographically forced upward motion w derived from near-surface atmospheric data. This study improves the conceptual model of the warm-rain process for considering the strength of the upstream flow of the low-level troposphere. Under a weak upstream current, rain reaches the foothills of the windward mountain slope because of sufficient time for condensation and precipitation enhancement by the topography. Conversely, under a strong upstream current, precipitation enhancement occurs nearer to the mountain peak. This is because the upstream current flows so quickly that there is insufficient time for enhancement of precipitation over the foothills of the windward mountain slope. After implementing a variable threshold for w that depends on the mean horizontal low-level wind, the area of orographic enhancement of rain was detected reasonably well in cases of both strong and weak winds. To improve the accuracy of estimates of orographic rainfall, an adjustment to the rain estimation was introduced using a lower-frequency channel. The biases of the rainfall estimate for the adjusted scheme from the Tropical Rainfall Measuring Mission Precipitation Radar were improved for the cases considered here as well as for the Asian region of heavy orographic rainfall over land.

2009 ◽  
Vol 24 (4) ◽  
pp. 1009-1031 ◽  
Author(s):  
Maximiliano Viale ◽  
Federico A. Norte

Abstract The most intense orographic precipitation event over the subtropical central Andes (36°–30°S) during winter 2005 was examined using observational data and a regional model simulation. The Eta-Programa Regional de Meteorología (PRM) model forecast was evaluated and used to explore the airflow structure that generated this heavy precipitation event, with a focus on orographic influences. Even though the model did not realistically reproduce any near-surface variables, nor the precipitation shadow in the leeside lowlands, its reliable forecast of heavy precipitation over the windward side and the wind fields suggests that it can be used as a valuable forecasting tool for such events in the region. The synoptic flow of the 26–29 August 2005 storm responded to a well-defined dipole from low to upper levels with anomalous low (high) geopotential heights at midlatitudes (subtropical) latitudes located off the southeast Pacific coast, resulting in a large meridional geopotential height gradient that drove a strong anomalous cross-barrier flow. Precipitation enhancement in the Andes was observed during the entire event; however, the highest rates were in the prefrontal sector under the low-level stable stratification and cross-barrier winds exceeding 2.5 standard deviations (σ) from the climatological monthly mean. The combination of strong cross-mountain winds with the stable stratification in the air mass of a frontal system, impinging on the high Andes range, appears to be the major factor in determining the flow structure that produced the pattern of precipitation enhancement, with uplift maximized near mountaintops and low-level blocking upwindleading to the formation of a low-level along-barrier jet. Additionally, only the upstream wind anomalies for the 15 heaviest events over a 10-yr (1967–76) period were investigated. They exhibited strong anomalous northwesterly winds for 14 of the 15 events, whereas for the remaining event there were no available observations to evaluate. Thus, these anomalies may also be exploited for forecasting capabilities.


2016 ◽  
Vol 29 (9) ◽  
pp. 3403-3422 ◽  
Author(s):  
Baohua Chen ◽  
Chuntao Liu

Abstract This study uses 16-yr Tropical Rainfall Measuring Mission (TRMM) radar precipitation feature (RPF) data to characterize warm rain systems in the tropics with large horizontal extensions, referred to as warm organized rain systems. The systems are selected by specifying the RPFs with minimum infrared brightness temperature warmer than 0°C and rain area greater than 500 km2. ERA-Interim atmospheric fields and SST from NOAA are analyzed to highlight the environmental characteristics of warm organized rain systems. Warm organized systems occur over specific oceanic regions, including the eastern Pacific ITCZ, the eastern part of the SPCZ, and coastal regions. In contrast with ubiquitous warm isolated RPFs, warm organized systems have greater near-surface radar reflectivity. The rainfall amounts generated by warm organized systems are greater in winter than in summer. Composite analyses indicate that warm organized RPFs prefer to coexist with a dry midtroposphere associated with a strong upper-level descent, an enhanced near-surface moisture convergence, and a strong low-level large-scale ascent. The shallow meridional circulation in the eastern Pacific is significantly stronger for warm organized RPFs compared to the circulation for warm isolated RPFs. Warm organized systems over the tropical eastern Pacific occur at warm SSTs with mean value of about 27°C and a strong SST meridional gradient. The warm organized RPFs in the tropical eastern Pacific are found to be at the southern edge of deep ITCZ cores. This is probably related to the meridional asymmetrical thermodynamic structure over the eastern Pacific ITCZ with a higher low-level humidity to the south. Similar favorable large-scale environments for the warm organized RPFs are also found over the SPCZ and other regions.


2007 ◽  
Vol 64 (3) ◽  
pp. 711-737 ◽  
Author(s):  
Matthew F. Garvert ◽  
Bradley Smull ◽  
Cliff Mass

Abstract This study combines high-resolution mesoscale model simulations and comprehensive airborne Doppler radar observations to identify kinematic structures influencing the production and mesoscale distribution of precipitation and microphysical processes during a period of heavy prefrontal orographic rainfall over the Cascade Mountains of Oregon on 13–14 December 2001 during the second phase of the Improvement of Microphysical Parameterization through Observational Verification Experiment (IMPROVE-2) field program. Airborne-based radar detection of precipitation from well upstream of the Cascades to the lee allows a depiction of terrain-induced wave motions in unprecedented detail. Two distinct scales of mesoscale wave–like air motions are identified: 1) a vertically propagating mountain wave anchored to the Cascade crest associated with strong midlevel zonal (i.e., cross barrier) flow, and 2) smaller-scale (<20-km horizontal wavelength) undulations over the windward foothills triggered by interaction of the low-level along-barrier flow with multiple ridge–valley corrugations oriented perpendicular to the Cascade crest. These undulations modulate cloud liquid water (CLW) and snow mixing ratios in the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5), with modeled structures comparing favorably to radar-documented zones of enhanced reflectivity and CLW measured by the NOAA P3 aircraft. Errors in the model representation of a low-level shear layer and the vertically propagating mountain waves are analyzed through a variety of sensitivity tests, which indicated that the mountain wave’s amplitude and placement are extremely sensitive to the planetary boundary layer (PBL) parameterization being employed. The effects of 1) using unsmoothed versus smoothed terrain and 2) the removal of upstream coastal terrain on the flow and precipitation over the Cascades are evaluated through a series of sensitivity experiments. Inclusion of unsmoothed terrain resulted in net surface precipitation increases of ∼4%–14% over the windward slopes relative to the smoothed-terrain simulation. Small-scale waves (<20-km horizontal wavelength) over the windward slopes significantly impact the horizontal pattern of precipitation and hence quantitative precipitation forecast (QPF) accuracy.


Author(s):  
Evan S. Bentley ◽  
Richard L. Thompson ◽  
Barry R. Bowers ◽  
Justin G. Gibbs ◽  
Steven E. Nelson

AbstractPrevious work has considered tornado occurrence with respect to radar data, both WSR-88D and mobile research radars, and a few studies have examined techniques to potentially improve tornado warning performance. To date, though, there has been little work focusing on systematic, large-sample evaluation of National Weather Service (NWS) tornado warnings with respect to radar-observable quantities and the near-storm environment. In this work, three full years (2016–2018) of NWS tornado warnings across the contiguous United States were examined, in conjunction with supporting data in the few minutes preceding warning issuance, or tornado formation in the case of missed events. The investigation herein examines WSR-88D and Storm Prediction Center (SPC) mesoanalysis data associated with these tornado warnings with comparisons made to the current Warning Decision Training Division (WDTD) guidance.Combining low-level rotational velocity and the significant tornado parameter (STP), as used in prior work, shows promise as a means to estimate tornado warning performance, as well as relative changes in performance as criteria thresholds vary. For example, low-level rotational velocity peaking in excess of 30 kt (15 m s−1), in a near-storm environment which is not prohibitive for tornadoes (STP > 0), results in an increased probability of detection and reduced false alarms compared to observed NWS tornado warning metrics. Tornado warning false alarms can also be reduced through limiting warnings with weak (<30 kt), broad (>1nm) circulations in a poor (STP=0) environment, careful elimination of velocity data artifacts like sidelobe contamination, and through greater scrutiny of human-based tornado reports in otherwise questionable scenarios.


Author(s):  
Fan Wu ◽  
Kelly Lombardo

AbstractA mechanism for precipitation enhancement in squall lines moving over mountainous coastal regions is quantified through idealized numerical simulations. Storm intensity and precipitation peak over the sloping terrain as storms descend from an elevated plateau toward the coastline and encounter the marine atmospheric boundary layer (MABL). Storms are most intense as they encounter the deepest MABLs. As the descending storm outflow collides with a moving MABL (sea breeze), surface and low-level air parcels initially accelerate upward, though their ultimate trajectory is governed by the magnitude of the negative non-hydrostatic inertial pressure perturbation behind the cold pool leading edge. For shallow MABLs, the baroclinic gradient across the gust front generates large horizontal vorticity, a low-level negative pressure perturbation, and thus a downward acceleration of air parcels following their initial ascent. A deep MABL reduces the baroclinically-generated vorticity, leading to a weaker pressure perturbation and minimal downward acceleration, allowing air to accelerate into a storm’s updraft.Once storms move away from the terrain base and over the full depth of the MABLs, storms over the deepest MABLs decay most rapidly, while those over the shallowest MABLs initially intensify. Though elevated ascent exists above all MABLs, the deepest MABLs substantially reduce the depth of the high-θe layer above the MABLs and limit instability. This relationship is insensitive to MABL temperature, even though surface-based ascent is present for the less cold MABLs, the MABL thermal deficit is smaller, and convective available potential energy (CAPE) is higher.


Author(s):  
Jonathan M. Garner ◽  
William C. Iwasko ◽  
Tyler D. Jewel ◽  
Richard L. Thompson ◽  
Bryan T. Smith

AbstractA dataset maintained by the Storm Prediction Center (SPC) of 6300 tornado events from 2009–2015, consisting of radar-identified convective modes and near-storm environmental information obtained from Rapid Update Cycle and Rapid Refresh model analysis grids, has been augmented with additional radar information related to the low-level mesocyclones associated with tornado longevity, path-length, and width. All EF2–EF5 tornadoes, in addition to randomly selected EF0–EF1 tornadoes, were extracted from the SPC dataset, which yielded 1268 events for inclusion in the current study. Analysis of that data revealed similar values of the effective-layer significant tornado parameter for the longest-lived (60+ min) tornadic circulations, longest-tracked (≥ 68 km) tornadoes, and widest tornadoes (≥ 1.2 km). However, the widest tornadoes occurring west of –94° longitude were associated with larger mean-layer convective available potential energy, storm-top divergence, and low-level rotational velocity. Furthermore, wide tornadoes occurred when low-level winds were out of the southeast resulting in large low-level hodograph curvature and near-surface horizontal vorticity that was more purely streamwise compared to long-lived and long-tracked events. On the other hand, tornado path-length and longevity were maximized with eastward migrating synoptic-scale cyclones associated with strong southwesterly wind profiles through much of the troposphere, fast storm motions, large values of bulk wind difference and storm-relative helicity, and lower buoyancy.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Zafar Iqbal ◽  
Heung-No Lee ◽  
Saeid Nooshabadi

Cooperation among sensors in a wireless sensor network, deployed for industrial monitoring in an indoor scenario, is a topic of interest in the smart factory and smart city research. The indoor wireless communication channel is very harsh and the observations of all the sensors cannot be sent reliably to the base station. Failure to transmit correct sensing results to the base station may result in false alarms or missed detection of events. Therefore, we propose a cooperation scheme for the wireless sensors to send the data reliably to the base station. Our aim is to increase the reliability of the received information, reduce the probability of error, lower the overall power consumption, and keep the latency to an acceptable low level. We propose a reliability factor feedback algorithm to adjust the weight of unreliable sensors in the decision-making process. The proposed scheme is analyzed based on its latency, power consumption, and packet delivery ratio. Our results show significant improvement in the reliability of the received data, improved packet delivery, and reduced false alarm ratio for full repetition and cluster head-based cooperation. The power consumption and latency in data transmission are also kept to an acceptable low level.


2021 ◽  
Vol 21 (5) ◽  
pp. 4149-4167
Author(s):  
Joseph Sedlar ◽  
Adele Igel ◽  
Hagen Telg

Abstract. Clear-sky periods across the high latitudes have profound impacts on the surface energy budget and lower atmospheric stratification; however an understanding of the atmospheric processes leading to low-level cloud dissipation and formation events is limited. A method to identify clear periods at Utqiaġvik (formerly Barrow), Alaska, during a 5-year period (2014–2018) is developed. A suite of remote sensing and in situ measurements from the high-latitude observatory are analyzed; we focus on comparing and contrasting atmospheric properties during low-level (below 2 km) cloud dissipation and formation events to understand the processes controlling clear-sky periods. Vertical profiles of lidar backscatter suggest that aerosol presence across the lower atmosphere is relatively invariant during the periods bookending clear conditions, which suggests that a sparsity of aerosol is not frequently a cause for cloud dissipation on the North Slope of Alaska. Further, meteorological analysis indicates two active processes ongoing that appear to support the formation of low clouds after a clear-sky period: namely, horizontal advection, which was dominant in winter and early spring, and quiescent air mass modification, which was dominant in the summer. During summer, the dominant mode of cloud formation is a low cloud or fog layer developing near the surface. This low cloud formation is driven largely by air mass modification under relatively quiescent synoptic conditions. Near-surface aerosol particles concentrations changed by a factor of 2 around summer formation events. Thermodynamic adjustment and increased aerosol presence under quiescent atmospheric conditions are hypothesized as important mechanisms for fog formation.


2019 ◽  
Author(s):  
Étienne Vignon ◽  
Olivier Traullé ◽  
Alexis Berne

Abstract. Eight years of high-resolution radiosonde data at nine Antarctic stations are analysed to provide the first large scale characterization of the fine scale vertical structure of the low troposphere up to 3 km of altitude over the coastal margins of East Antarctica. Radiosonde data show a large spatial variability of wind, temperature and humidity profiles, with different features between stations in katabatic regions (e.g., Dumont d'Urville and Mawson stations), stations over two ice shelves (Neumayer and Halley stations) and regions with complex orography (e.g., Mc Murdo). At Dumont d'Urville, Mawson and Davis stations, the yearly median wind speed profiles exhibit a clear low-level katabatic jet. During precipitation events, the low-level flow generally remains of continental origin and its speed is even reinforced due to the increase in the continent- ocean pressure gradient. Meanwhile, the relative humidity profiles show a dry low troposphere, suggesting the occurence of low-level sublimation of precipitation in katabatic regions but such a phenomenon does not appreciably occur over the ice-shelves near Halley and Neumayer. Although ERA-Interim and ERA5 reanalyses assimilate radiosoundings at most stations considered here, substantial – and sometimes large – low-level wind and humidity biases are revealed but ERA5 shows overall better performances. A free simulation with the regional model Polar WRF (at a 35-km resolution) over the entire continent shows too strong and too shallow near-surface jets in katabatic regions especially in winter. This may be a consequence of an understimated coastal cold air bump and associated sea-continent pressure gradient force due to the coarse 35 km resolution of the Polar WRF simulation. Beyond documenting the vertical structure of the low troposphere over coastal East-Antarctica, this study gives insights into the reliability and accuracy of two major reanalysis products in this region on the Earth and it raises the difficulty of modeling the low-level flow over the margins of the ice sheet with a state-of-the-art climate model.


2018 ◽  
Vol 840 ◽  
pp. 266-290 ◽  
Author(s):  
S. M. Iman Gohari ◽  
Sutanu Sarkar

Stratified flow in nocturnal boundary layers is studied using direct numerical simulation (DNS) of the Ekman layer, a model problem that is useful to understand atmospheric boundary-layer (ABL) turbulence. A stabilizing buoyancy flux is applied for a finite time to a neutral Ekman layer. Based on previous studies and the simulations conducted here, the choice of $L_{\mathit{cri}}^{+}=Lu_{\ast }/\unicode[STIX]{x1D708}\approx 700$ ($L$ is the Obukhov length scale and $u_{\ast }$ is the friction velocity) provides a cooling flux that is sufficiently strong to cause the initial collapse of turbulence. The turbulent kinetic energy decays over a time scale of $4.06L/u_{\ast }$ during the collapse. The simulations suggest that imposing $L_{\mathit{cri}}^{+}\approx 700$ on the neutral Ekman layer results in turbulence collapse during the initial transient, independent of Reynolds number, $Re_{\ast }$. However, the long-time state of the flow, i.e. turbulent with spatial intermittency or non-turbulent, is found to depend on the initial value of $Re_{\ast }$ since the cooling flux and resultant stratification increase with $Re_{\ast }$ for a given $L^{+}$. The lower-$Re_{\ast }$ cases have sustained turbulence with shear and stratification profiles that evolve in a manner such that the gradient Richardson number, $Ri_{g}$, in the near-surface layer, including the low-level jet, remains subcritical. The highest $Re_{\ast }$ case has supercritical $Ri_{g}$ in the low-level jet and turbulence does not recover. A theoretical discussion is performed to infer that the bulk Richardson number, $Ri_{b}$, is more suitable than $L^{+}$ to determine the fate of stratified Ekman layers at late time. DNS results support the implications of $Ri_{b}$ for the effect of initial $Re_{\ast }$ and $L^{+}$ on the flow.


Sign in / Sign up

Export Citation Format

Share Document