scholarly journals Present Climate Evaluation and Added Value Analysis of Dynamically Downscaled Simulations of CORDEX—East Asia

2018 ◽  
Vol 57 (10) ◽  
pp. 2317-2341 ◽  
Author(s):  
Delei Li ◽  
Baoshu Yin ◽  
Jianlong Feng ◽  
Alessandro Dosio ◽  
Beate Geyer ◽  
...  

AbstractIn this study, we investigate the skills of the regional climate model Consortium for Small-Scale Modeling in Climate Mode (CCLM) in reproducing historical climatic features and their added value to the driving global climate models (GCMs) of the Coordinated Regional Climate Downscaling Experiment—East Asia (CORDEX-EA) domain. An ensemble of climate simulations, with a resolution of 0.44°, was conducted by downscaling four GCMs: CNRM-CM5, EC-EARTH, HadGEM2, and MPI-ESM-LR. The CCLM outputs were compared with different observations and reanalysis datasets. Results showed strong seasonal variability of CCLM’s ability in reproducing climatological means, variability, and extremes. The bias of the simulated summer temperatures is generally smaller than that of the winter temperatures; in addition, areas where CCLM adds value to the driving GCMs in simulating temperature are larger in the winter than in the summer. CCLM outperforms GCMs in terms of generating climatological precipitation means and daily precipitation distributions for most regions in the winter, but this is not always the case for the summer. It was found that CCLM biases are partly inherited from GCMs and are significantly shaped by structural biases of CCLM. Furthermore, downscaled simulations show added value in capturing features of consecutive wet days for the tropics and of consecutive dry days for areas to the north of 30°N. We found considerable uncertainty from reanalysis and observation datasets in temperatures and precipitation climatological means for some regions that rival bias values of GCMs and CCLM simulations. We recommend carefully selecting reference datasets when evaluating modeled climate means.

2014 ◽  
Vol 15 (2) ◽  
pp. 830-843 ◽  
Author(s):  
D. D’Onofrio ◽  
E. Palazzi ◽  
J. von Hardenberg ◽  
A. Provenzale ◽  
S. Calmanti

Abstract Precipitation extremes and small-scale variability are essential drivers in many climate change impact studies. However, the spatial resolution currently achieved by global climate models (GCMs) and regional climate models (RCMs) is still insufficient to correctly identify the fine structure of precipitation intensity fields. In the absence of a proper physically based representation, this scale gap can be at least temporarily bridged by adopting a stochastic rainfall downscaling technique. In this work, a precipitation downscaling chain is introduced where the global 40-yr ECMWF Re-Analysis (ERA-40) (at about 120-km resolution) is dynamically downscaled using the Protheus RCM at 30-km resolution. The RCM precipitation is then further downscaled using a stochastic downscaling technique, the Rainfall Filtered Autoregressive Model (RainFARM), which has been extended for application to long climate simulations. The application of the stochastic downscaling technique directly to the larger-scale reanalysis field at about 120-km resolution is also discussed. To assess the ability of this approach in reproducing the main statistical properties of precipitation, the downscaled model results are compared with the precipitation data provided by a dense network of 122 rain gauges in northwestern Italy, in the time period from 1958 to 2001. The high-resolution precipitation fields obtained by stochastically downscaling the RCM outputs reproduce well the seasonality and amplitude distribution of the observed precipitation during most of the year, including extreme events and variance. In addition, the RainFARM outputs compare more favorably to observations when the procedure is applied to the RCM output rather than to the global reanalyses, highlighting the added value of reaching high enough resolution with a dynamical model.


Author(s):  
Amina Mami ◽  
Djilali Yebdri ◽  
Sabine Sauvage ◽  
Mélanie Raimonet ◽  
José Miguel

Abstract Climate change is expected to increase in the future in the Mediterranean region, including Algeria. The Tafna basin, vulnerable to drought, is one of the most important catchments ensuring water self-sufficiency in northwestern Algeria. The objective of this study is to estimate the evolution of hydrological components of the Tafna basin, throughout 2020–2099, comparing to the period 1981–2000. The SWAT model (Soil and Water Assessment Tool), calibrated and validated on the Tafna basin with good Nash at the outlet 0.82, is applied to analyze the spatial and temporal evolution of hydrological components, over the basin throughout 2020–2099. The application is produced using a precipitation and temperature minimum/maximum of an ensemble of climate model outputs obtained from a combination of eight global climate models and two regional climate models of Coordinated Regional Climate Downscaling Experiment project. The results of this study show that the decrease of precipitation in January, on average −25%, ranged between −5% and −44% in the future. This diminution affects all of the water components and fluxes of a watershed, namely, in descending order of impact: the river discharge causing a decrease −36%, the soil water available −31%, the evapotranspiration −30%, and the lateral flow −29%.


2012 ◽  
Vol 12 (8) ◽  
pp. 3601-3610 ◽  
Author(s):  
P. Liu ◽  
A. P. Tsimpidi ◽  
Y. Hu ◽  
B. Stone ◽  
A. G. Russell ◽  
...  

Abstract. Dynamical downscaling has been extensively used to study regional climate forced by large-scale global climate models. During the downscaling process, however, the simulation of regional climate models (RCMs) tends to drift away from the driving fields. Developing a solution that addresses this issue, by retaining the large scale features (from the large-scale fields) and the small-scale features (from the RCMs) has led to the development of "nudging" techniques. Here, we examine the performance of two nudging techniques, grid and spectral nudging, in the downscaling of NCEP/NCAR data with the Weather Research and Forecasting (WRF) Model. The simulations are compared against the results with North America Regional Reanalysis (NARR) data set at different scales of interest using the concept of similarity. We show that with the appropriate choice of wave numbers, spectral nudging outperforms grid nudging in the capacity of balancing the performance of simulation at the large and small scales.


2020 ◽  
Vol 59 (2) ◽  
pp. 207-235 ◽  
Author(s):  
Lei Zhang ◽  
YinLong Xu ◽  
ChunChun Meng ◽  
XinHua Li ◽  
Huan Liu ◽  
...  

AbstractIn aiming for better access to climate change information and for providing climate service, it is important to obtain reliable high-resolution temperature simulations. Systematic comparisons are still deficient between statistical and dynamic downscaling techniques because of their inherent unavoidable uncertainties. In this paper, 20 global climate models (GCMs) and one regional climate model [Providing Regional Climates to Impact Studies (PRECIS)] are employed to evaluate their capabilities in reproducing average trends of mean temperature (Tm), maximum temperature (Tmax), minimum temperature (Tmin), diurnal temperature range (DTR), and extreme events represented by frost days (FD) and heat-wave days (HD) across China. It is shown generally that bias of temperatures from GCMs relative to observations is over ±1°C across more than one-half of mainland China. PRECIS demonstrates better representation of temperatures (except for HD) relative to GCMs. There is relatively better performance in Huanghuai, Jianghuai, Jianghan, south Yangzi River, and South China, whereas estimation is not as good in Xinjiang, the eastern part of northwest China, and the Tibetan Plateau. Bias-correction spatial disaggregation is used to downscale GCMs outputs, and bias correction is applied for PRECIS outputs, which demonstrate better improvement to a bias within ±0.2°C for Tm, Tmax, Tmin, and DTR and ±2 days for FD and HD. Furthermore, such improvement is also verified by the evidence of increased spatial correlation coefficient and symmetrical uncertainty, decreased root-mean-square error, and lower standard deviation for reproductions. It is seen from comprehensive ranking metrics that different downscaled models show the most improvement across different climatic regions, implying that optional ensembles of models should be adopted to provide sufficient high-quality climate information.


2016 ◽  
Vol 11 (2) ◽  
pp. 670-678 ◽  
Author(s):  
N. S Vithlani ◽  
H. D Rank

For the future projections Global climate models (GCMs) enable development of climate projections and relate greenhouse gas forcing to future potential climate states. When focusing it on smaller scales it exhibit some limitations to overcome this problem, regional climate models (RCMs) and other downscaling methods have been developed. To ensure statistics of the downscaled output matched the corresponding statistics of the observed data, bias correction was used. Quantify future changes of climate extremes were analyzed, based on these downscaled data from two RCMs grid points. Subset of indices and models, results of bias corrected model output and raw for the present day climate were compared with observation, which demonstrated that bias correction is important for RCM outputs. Bias correction directed agreements of extreme climate indices for future climate it does not correct for lag inverse autocorrelation and fraction of wet and dry days. But, it was observed that adjusting both the biases in the mean and variability, relatively simple non-linear correction, leads to better reproduction of observed extreme daily and multi-daily precipitation amounts. Due to climate change temperature and precipitation will increased day by day.


2021 ◽  
Author(s):  
Guillaume Evin ◽  
Samuel Somot ◽  
Benoit Hingray

Abstract. Large Multiscenarios Multimodel Ensembles (MMEs) of regional climate model (RCM) experiments driven by Global Climate Models (GCM) are made available worldwide and aim at providing robust estimates of climate changes and associated uncertainties. Due to many missing combinations of emission scenarios and climate models leading to sparse Scenario-GCM-RCM matrices, these large ensembles are however very unbalanced, which makes uncertainty analyses impossible with standard approaches. In this paper, the uncertainty assessment is carried out by applying an advanced statistical approach, called QUALYPSO, to a very large ensemble of 87 EURO-CORDEX climate projections, the largest ensemble ever produced for regional projections in Europe. This analysis provides i) the most up-to-date and balanced estimates of mean changes for near-surface temperature and precipitation in Europe, ii) the total uncertainty of projections and its partition as a function of time, and iii) the list of the most important contributors to the model uncertainty. For changes of total precipitation and mean temperature in winter (DJF) and summer (JJA), the uncertainty due to RCMs can be as large as the uncertainty due to GCMs at the end of the century (2071–2099). Both uncertainty sources are mainly due to a small number of individual models clearly identified. Due to the highly unbalanced character of the MME, mean estimated changes can drastically differ from standard average estimates based on the raw ensemble of opportunity. For the RCP4.5 emission scenario in Central-Eastern Europe for instance, the difference between balanced and direct estimates are up to 0.8 °C for summer temperature changes and up to 20 % for summer precipitation changes at the end of the century.


Hadmérnök ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 99-107
Author(s):  
László Földi ◽  
László Halász

Defining the term of climate, we investigate the role of natural causes and effects of human activities in climate change. The temperature of the Earth is determined by the balance between the amount of radiation energy received from the Sun and that emitted from the surface of the Earth towards the outer space. Greenhouse gases in the atmosphere, including water vapor, carbon dioxide, methane and nitrous oxides, act to make the surface much warmer, because they absorb and emit heat energy in all directions (including downwards), keeping Earth’s surface and lower atmosphere warm. The primary cause of climate change is the burning of fossil fuels, such as oil and coal, which emits greenhouse gases into the atmosphere – primarily carbon dioxide. We give a review about the activity of the Intergovernmental Panel on Climate Change and the United Nations Climate Change Conferences. Shortly investigate the different global climate models and some regional climate models. Finally discuss the results of regional climate model simulations for the Carpathian Basin.


2020 ◽  
Author(s):  
Michelle Reboita ◽  
Marco Reale ◽  
Rosmeri da Rocha ◽  
Graziano Giuliani ◽  
Erika Coppola ◽  
...  

<p>Projections of the precipitation associated with cyclones in the main cyclogenetic regions of the Extratropical Southern Hemisphere domains (Africa - AFR, Australia - AUS and South America - SAM) are here analyzed during the winter season (JJA). The projections were obtained with the Regional Climate Model version 4 (RegCM4) nested in three global climate models (GCMs) from the Coupled Model Intercomparison Project phase 5 (CMIP5) under the Representative Concentration Pathway 8.5. RegCM4 simulations were executed with horizontal grid spacing of 25 km and for the period 1979-2100. As reference period, we consider the interval 1995-2014 and as future climate, the period 2080-2099. Cyclones are identified using an algorithm based on the neighbor nearest approach applied to 6 hourly mean sea level pressure (SLP) fields. In SAM and AUS domains, two hotspot regions for cyclogenesis are selected while for AFR only one is considered. First, in each hotspot region, the cyclogeneses are identified and, then, the mean precipitation from the previous day (day<sub>-1</sub>) to the day after (day<sub>+1</sub>) of these processes is calculated. A general negative trend in the cyclone's frequency is projected for the period 2080-2099. However, for the same period, it is projected an increase of precipitation intensity for AFR domain, mainly near the southwestern coast of the continent. In AUS the increase is observed between southeastern Australia and New Zeland, and over north New Zealand. For SAM there is an expansion of the area with a maximum precipitation intensity close to southern Brazil and Uruguay and to the east of 60<sup>o</sup>W near 40<sup>o</sup>S. Summarizing, the precipitation associated with individual cyclones will increase on average in the future (for example 30% in the SAM domain), being the storms less frequent but more intense.</p>


Author(s):  
Filippo Giorgi ◽  
Erika Coppola ◽  
Daniela Jacob ◽  
Claas Teichmann ◽  
Sabina Abba Omar ◽  
...  

AbstractWe describe the first effort within the Coordinated Regional Climate Downscaling Experiment - Coordinated Output for Regional Evaluation, or CORDEX-CORE EXP-I. It consists of a set of 21st century projections with two regional climate models (RCMs) downscaling three global climate model (GCM) simulations from the CMIP5 program, for two greenhouse gas concentration pathways (RCP8.5 and RCP2.6), over 9 CORDEX domains at ~25 km grid spacing. Illustrative examples from the initial analysis of this ensemble are presented, covering a wide range of topics, such as added value of RCM nesting, extreme indices, tropical and extratropical storms, monsoons, ENSO, severe storm environments, emergence of change signals, energy production. They show that the CORDEX-CORE EXP-I ensemble can provide downscaled information of unprecedented comprehensiveness to increase understanding of processes relevant for regional climate change and impacts, and to assess the added value of RCMs. The CORDEX-CORE EXP-I dataset, which will be incrementally augmented with new simulations, is intended to be a public resource available to the scientific and end-user communities for application to process studies, impacts on different socioeconomic sectors and climate service activities. The future of the CORDEX-CORE initiative is also discussed.


Sign in / Sign up

Export Citation Format

Share Document