Precipitation Associated with Cyclogenetic Hotspot Regions in the Extratropical Southern Hemisphere: CORDEX-CORE Projections

Author(s):  
Michelle Reboita ◽  
Marco Reale ◽  
Rosmeri da Rocha ◽  
Graziano Giuliani ◽  
Erika Coppola ◽  
...  

<p>Projections of the precipitation associated with cyclones in the main cyclogenetic regions of the Extratropical Southern Hemisphere domains (Africa - AFR, Australia - AUS and South America - SAM) are here analyzed during the winter season (JJA). The projections were obtained with the Regional Climate Model version 4 (RegCM4) nested in three global climate models (GCMs) from the Coupled Model Intercomparison Project phase 5 (CMIP5) under the Representative Concentration Pathway 8.5. RegCM4 simulations were executed with horizontal grid spacing of 25 km and for the period 1979-2100. As reference period, we consider the interval 1995-2014 and as future climate, the period 2080-2099. Cyclones are identified using an algorithm based on the neighbor nearest approach applied to 6 hourly mean sea level pressure (SLP) fields. In SAM and AUS domains, two hotspot regions for cyclogenesis are selected while for AFR only one is considered. First, in each hotspot region, the cyclogeneses are identified and, then, the mean precipitation from the previous day (day<sub>-1</sub>) to the day after (day<sub>+1</sub>) of these processes is calculated. A general negative trend in the cyclone's frequency is projected for the period 2080-2099. However, for the same period, it is projected an increase of precipitation intensity for AFR domain, mainly near the southwestern coast of the continent. In AUS the increase is observed between southeastern Australia and New Zeland, and over north New Zealand. For SAM there is an expansion of the area with a maximum precipitation intensity close to southern Brazil and Uruguay and to the east of 60<sup>o</sup>W near 40<sup>o</sup>S. Summarizing, the precipitation associated with individual cyclones will increase on average in the future (for example 30% in the SAM domain), being the storms less frequent but more intense.</p>

Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3299
Author(s):  
Christina M. Botai ◽  
Joel O. Botai ◽  
Nosipho N. Zwane ◽  
Patrick Hayombe ◽  
Eric K. Wamiti ◽  
...  

This research study evaluated the projected future climate and anticipated impacts on water-linked sectors on the transboundary Limpopo River Basin (LRB) with a focus on South Africa. Streamflow was simulated from two CORDEX-Africa regional climate models (RCMs) forced by the 5th phase of the Coupled Model Inter-Comparison Project (CMIP5) Global Climate Models (GCMs), namely, the CanESM2m and IPSL-CM5A-MR climate models. Three climate projection time intervals were considered spanning from 2006 to 2099 and delineated as follows: current climatology (2006–2035), near future (2036–2065) and end of century future projection (2070–2099). Statistical metrics derived from the projected streamflow were used to assess the impacts of the changing climate on water-linked sectors. These metrics included streamflow trends, low and high flow quantile probabilities, the Standardized Streamflow Index (SSI) trends and the proportion (%) of dry and wet years, as well as drought monitoring indicators. Based on the Mann-Kendall (MK) trend test, the LRB is projected to experience reduced streamflow in both the near and the distant future. The basin is projected to experience frequent dry and wet conditions that can translate to drought and flash floods, respectively. In particular, a high proportion of dry and a few incidences of wet years are expected in the basin in the future. In general, the findings of this research study will inform and enhance climate change adaptation and mitigation policy decisions and implementation thereof, to sustain the livelihoods of vulnerable communities.


2013 ◽  
Vol 70 (7) ◽  
pp. 2120-2136 ◽  
Author(s):  
Hyun-Joo Choi ◽  
Hye-Yeong Chun

Abstract The excessively strong polar jet and cold pole in the Southern Hemisphere winter stratosphere are systematic biases in most global climate models and are related to underestimated wave drag in the winter extratropical stratosphere—namely, missing gravity wave drag (GWD). Cumulus convection is strong in the winter extratropics in association with storm-track regions; thus, convective GWD could be one of the missing GWDs in models that do not adopt source-based nonorographic GWD parameterizations. In this study, the authors use the Whole Atmosphere Community Climate Model (WACCM) and show that the zonal-mean wind and temperature biases in the Southern Hemisphere winter stratosphere of the model are significantly alleviated by including convective GWD (GWDC) parameterizations. The reduction in the wind biases is due to enhanced wave drag in the winter extratropical stratosphere, which is caused directly by the additional GWDC and indirectly by the increased existing nonorographic GWD and resolved wave drag in response to the GWDC. The cold temperature biases are alleviated by increased downwelling in the winter polar stratosphere, which stems from an increased poleward motion due to enhanced wave drag in the winter extratropical stratosphere. A comparison between two simulations separately using the ray-based and columnar GWDC parameterizations shows that the polar night jet with a ray-based GWDC parameterization is much more realistic than that with a columnar GWDC parameterization.


Author(s):  
Amina Mami ◽  
Djilali Yebdri ◽  
Sabine Sauvage ◽  
Mélanie Raimonet ◽  
José Miguel

Abstract Climate change is expected to increase in the future in the Mediterranean region, including Algeria. The Tafna basin, vulnerable to drought, is one of the most important catchments ensuring water self-sufficiency in northwestern Algeria. The objective of this study is to estimate the evolution of hydrological components of the Tafna basin, throughout 2020–2099, comparing to the period 1981–2000. The SWAT model (Soil and Water Assessment Tool), calibrated and validated on the Tafna basin with good Nash at the outlet 0.82, is applied to analyze the spatial and temporal evolution of hydrological components, over the basin throughout 2020–2099. The application is produced using a precipitation and temperature minimum/maximum of an ensemble of climate model outputs obtained from a combination of eight global climate models and two regional climate models of Coordinated Regional Climate Downscaling Experiment project. The results of this study show that the decrease of precipitation in January, on average −25%, ranged between −5% and −44% in the future. This diminution affects all of the water components and fluxes of a watershed, namely, in descending order of impact: the river discharge causing a decrease −36%, the soil water available −31%, the evapotranspiration −30%, and the lateral flow −29%.


2020 ◽  
Vol 59 (2) ◽  
pp. 207-235 ◽  
Author(s):  
Lei Zhang ◽  
YinLong Xu ◽  
ChunChun Meng ◽  
XinHua Li ◽  
Huan Liu ◽  
...  

AbstractIn aiming for better access to climate change information and for providing climate service, it is important to obtain reliable high-resolution temperature simulations. Systematic comparisons are still deficient between statistical and dynamic downscaling techniques because of their inherent unavoidable uncertainties. In this paper, 20 global climate models (GCMs) and one regional climate model [Providing Regional Climates to Impact Studies (PRECIS)] are employed to evaluate their capabilities in reproducing average trends of mean temperature (Tm), maximum temperature (Tmax), minimum temperature (Tmin), diurnal temperature range (DTR), and extreme events represented by frost days (FD) and heat-wave days (HD) across China. It is shown generally that bias of temperatures from GCMs relative to observations is over ±1°C across more than one-half of mainland China. PRECIS demonstrates better representation of temperatures (except for HD) relative to GCMs. There is relatively better performance in Huanghuai, Jianghuai, Jianghan, south Yangzi River, and South China, whereas estimation is not as good in Xinjiang, the eastern part of northwest China, and the Tibetan Plateau. Bias-correction spatial disaggregation is used to downscale GCMs outputs, and bias correction is applied for PRECIS outputs, which demonstrate better improvement to a bias within ±0.2°C for Tm, Tmax, Tmin, and DTR and ±2 days for FD and HD. Furthermore, such improvement is also verified by the evidence of increased spatial correlation coefficient and symmetrical uncertainty, decreased root-mean-square error, and lower standard deviation for reproductions. It is seen from comprehensive ranking metrics that different downscaled models show the most improvement across different climatic regions, implying that optional ensembles of models should be adopted to provide sufficient high-quality climate information.


2016 ◽  
Vol 11 (2) ◽  
pp. 670-678 ◽  
Author(s):  
N. S Vithlani ◽  
H. D Rank

For the future projections Global climate models (GCMs) enable development of climate projections and relate greenhouse gas forcing to future potential climate states. When focusing it on smaller scales it exhibit some limitations to overcome this problem, regional climate models (RCMs) and other downscaling methods have been developed. To ensure statistics of the downscaled output matched the corresponding statistics of the observed data, bias correction was used. Quantify future changes of climate extremes were analyzed, based on these downscaled data from two RCMs grid points. Subset of indices and models, results of bias corrected model output and raw for the present day climate were compared with observation, which demonstrated that bias correction is important for RCM outputs. Bias correction directed agreements of extreme climate indices for future climate it does not correct for lag inverse autocorrelation and fraction of wet and dry days. But, it was observed that adjusting both the biases in the mean and variability, relatively simple non-linear correction, leads to better reproduction of observed extreme daily and multi-daily precipitation amounts. Due to climate change temperature and precipitation will increased day by day.


2021 ◽  
Author(s):  
Guillaume Evin ◽  
Samuel Somot ◽  
Benoit Hingray

Abstract. Large Multiscenarios Multimodel Ensembles (MMEs) of regional climate model (RCM) experiments driven by Global Climate Models (GCM) are made available worldwide and aim at providing robust estimates of climate changes and associated uncertainties. Due to many missing combinations of emission scenarios and climate models leading to sparse Scenario-GCM-RCM matrices, these large ensembles are however very unbalanced, which makes uncertainty analyses impossible with standard approaches. In this paper, the uncertainty assessment is carried out by applying an advanced statistical approach, called QUALYPSO, to a very large ensemble of 87 EURO-CORDEX climate projections, the largest ensemble ever produced for regional projections in Europe. This analysis provides i) the most up-to-date and balanced estimates of mean changes for near-surface temperature and precipitation in Europe, ii) the total uncertainty of projections and its partition as a function of time, and iii) the list of the most important contributors to the model uncertainty. For changes of total precipitation and mean temperature in winter (DJF) and summer (JJA), the uncertainty due to RCMs can be as large as the uncertainty due to GCMs at the end of the century (2071–2099). Both uncertainty sources are mainly due to a small number of individual models clearly identified. Due to the highly unbalanced character of the MME, mean estimated changes can drastically differ from standard average estimates based on the raw ensemble of opportunity. For the RCP4.5 emission scenario in Central-Eastern Europe for instance, the difference between balanced and direct estimates are up to 0.8 °C for summer temperature changes and up to 20 % for summer precipitation changes at the end of the century.


Hadmérnök ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 99-107
Author(s):  
László Földi ◽  
László Halász

Defining the term of climate, we investigate the role of natural causes and effects of human activities in climate change. The temperature of the Earth is determined by the balance between the amount of radiation energy received from the Sun and that emitted from the surface of the Earth towards the outer space. Greenhouse gases in the atmosphere, including water vapor, carbon dioxide, methane and nitrous oxides, act to make the surface much warmer, because they absorb and emit heat energy in all directions (including downwards), keeping Earth’s surface and lower atmosphere warm. The primary cause of climate change is the burning of fossil fuels, such as oil and coal, which emits greenhouse gases into the atmosphere – primarily carbon dioxide. We give a review about the activity of the Intergovernmental Panel on Climate Change and the United Nations Climate Change Conferences. Shortly investigate the different global climate models and some regional climate models. Finally discuss the results of regional climate model simulations for the Carpathian Basin.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1516 ◽  
Author(s):  
Zhijie Ta ◽  
Yang Yu ◽  
Lingxiao Sun ◽  
Xi Chen ◽  
Guijin Mu ◽  
...  

The Coupled Model Intercomparison Project Phase 5 (CMIP5) provides data, which is widely used to assess global and regional climate change. In this study, we evaluated the ability of 37 global climate models (GCMs) of CMIP5 to simulate historical precipitation in Central Asia (CA). The relative root mean square error (RRMSE), spatial correlation coefficient, and Kling-Gupta efficiency (KGE) were used as criteria for evaluation. The precipitation simulation results of GCMs were compared with the Climatic Research Unit (CRU) precipitation in 1986–2005. Most models show a variety of precipitation simulation capabilities both spatially and temporally, whereas the top six models were identified as having good performance in CA, including HadCM3, MIROC5, MPI-ESM-LR, MPI-ESM-P, CMCC-CM, and CMCC-CMS. As the GCMs have large uncertainties in the prediction of future precipitation, it is difficult to find the best model to predict future precipitation in CA. Multi-Model Ensemble (MME) results can give a good simulation of precipitation, and are superior to individual models.


2018 ◽  
Vol 12 (10) ◽  
pp. 3287-3292 ◽  
Author(s):  
Edward Hanna ◽  
Xavier Fettweis ◽  
Richard J. Hall

Abstract. Recent studies note a significant increase in high-pressure blocking over the Greenland region (Greenland Blocking Index, GBI) in summer since the 1990s. Such a general circulation change, indicated by a negative trend in the North Atlantic Oscillation (NAO) index, is generally highlighted as a major driver of recent surface melt records observed on the Greenland Ice Sheet (GrIS). Here we compare reanalysis-based GBI records with those from the Coupled Model Intercomparison Project 5 (CMIP5) suite of global climate models over 1950–2100. We find that the recent summer GBI increase lies well outside the range of modelled past reconstructions and future GBI projections (RCP4.5 and RCP8.5). The models consistently project a future decrease in GBI (linked to an increase in NAO), which highlights a likely key deficiency of current climate models if the recently observed circulation changes continue to persist. Given well-established connections between atmospheric pressure over the Greenland region and air temperature and precipitation extremes downstream, e.g. over northwest Europe, this brings into question the accuracy of simulated North Atlantic jet stream changes and resulting climatological anomalies over densely populated regions of northern Europe as well as of future projections of GrIS mass balance produced using global and regional climate models.


Sign in / Sign up

Export Citation Format

Share Document