scholarly journals Radiative Effect of Clouds at Ny-Ålesund, Svalbard, as Inferred from Ground-Based Remote Sensing Observations

2020 ◽  
Vol 59 (1) ◽  
pp. 3-22 ◽  
Author(s):  
Kerstin Ebell ◽  
Tatiana Nomokonova ◽  
Marion Maturilli ◽  
Christoph Ritter

AbstractFor the first time, the cloud radiative effect (CRE) has been characterized for the Arctic site Ny-Ålesund, Svalbard, Norway, including more than 2 years of data (June 2016–September 2018). The cloud radiative effect, that is, the difference between the all-sky and equivalent clear-sky net radiative fluxes, has been derived based on a combination of ground-based remote sensing observations of cloud properties and the application of broadband radiative transfer simulations. The simulated fluxes have been evaluated in terms of a radiative closure study. Good agreement with observed surface net shortwave (SW) and longwave (LW) fluxes has been found, with small biases for clear-sky (SW: 3.8 W m−2; LW: −4.9 W m−2) and all-sky (SW: −5.4 W m−2; LW: −0.2 W m−2) situations. For monthly averages, uncertainties in the CRE are estimated to be small (~2 W m−2). At Ny-Ålesund, the monthly net surface CRE is positive from September to April/May and negative in summer. The annual surface warming effect by clouds is 11.1 W m−2. The longwave surface CRE of liquid-containing cloud is mainly driven by liquid water path (LWP) with an asymptote value of 75 W m−2 for large LWP values. The shortwave surface CRE can largely be explained by LWP, solar zenith angle, and surface albedo. Liquid-containing clouds (LWP > 5 g m−2) clearly contribute most to the shortwave surface CRE (70%–98%) and, from late spring to autumn, also to the longwave surface CRE (up to 95%). Only in winter are ice clouds (IWP > 0 g m−2; LWP < 5 g m−2) equally important or even dominating the signal in the longwave surface CRE.

2008 ◽  
Vol 21 (17) ◽  
pp. 4223-4241 ◽  
Author(s):  
Seiji Kato ◽  
Fred G. Rose ◽  
David A. Rutan ◽  
Thomas P. Charlock

Abstract The zonal mean atmospheric cloud radiative effect, defined as the difference between the top-of-the-atmosphere (TOA) and surface cloud radiative effects, is estimated from 3 yr of Clouds and the Earth’s Radiant Energy System (CERES) data. The zonal mean shortwave effect is small, though it tends to be positive (warming). This indicates that clouds increase shortwave absorption in the atmosphere, especially in midlatitudes. The zonal mean atmospheric cloud radiative effect is, however, dominated by the longwave effect. The zonal mean longwave effect is positive in the tropics and decreases with latitude to negative values (cooling) in polar regions. The meridional gradient of the cloud effect between midlatitude and polar regions exists even when uncertainties in the cloud effect on the surface enthalpy flux and in the modeled irradiances are taken into account. This indicates that clouds increase the rate of generation of the mean zonal available potential energy. Because the atmospheric cooling effect in polar regions is predominately caused by low-level clouds, which tend to be stationary, it is postulated here that the meridional and vertical gradients of the cloud effect increase the rate of meridional energy transport by the dynamics of the atmosphere from the midlatitudes to the polar region, especially in fall and winter. Clouds then warm the surface in the polar regions except in the Arctic in summer. Clouds, therefore, contribute toward increasing the rate of meridional energy transport from the midlatitudes to the polar regions through the atmosphere.


2021 ◽  
Author(s):  
Marcus Klingebiel ◽  
André Ehrlich ◽  
Elena Ruiz-Donoso ◽  
Manfred Wendisch

&lt;p&gt;Over the last decades, the Arctic has experienced an enhanced warming, which is known as&amp;#160;Arctic amplification. This process leads to a decrease in the amount of Arctic sea ice, which&amp;#160;is linked by different feedback mechanisms to clouds and the related radiative properties. To&amp;#160;analyze how the properties of these Arctic clouds could change in a future sea ice free&amp;#160;Arctic, we completed three airborne campaigns in the marginal sea ice zone between 2017&amp;#160;and 2020 covering summer and winter conditions. During these campaigns we performed in-situ&amp;#160;and remote sensing measurements to study cloud micro- and macrophysical properties&amp;#160;and analyzed how these clouds affect the radiation budget. In this study we use the passive&amp;#160;remote sensing measurements from these airborne observations to retrieve cloud top&amp;#160;effective radius, liquid water path and cloud optical thickness. We found that these cloud&amp;#160;properties differ between a sea ice surface and over open water. The airborne observations&amp;#160;are supported by an analysis of the cloud product from the MODIS satellite. The systematic&amp;#160;differences of clouds over sea ice and the open ocean suggests that clouds may change in a&amp;#160;future warming Arctic environment.&lt;/p&gt;


2019 ◽  
Author(s):  
Hong Chen ◽  
Sebastian Schmidt ◽  
Michael D. King ◽  
Galina Wind ◽  
Anthony Bucholtz ◽  
...  

Abstract. Cloud optical properties such as optical thickness along with surface albedo are important inputs for deriving the shortwave radiative effects of clouds from space-borne remote sensing. Owing to insufficient knowledge about the snow or ice surface in the Arctic, cloud detection and the retrieval products derived from passive remote sensing, such as from the Moderate Resolution Imaging Spectroradiometer (MODIS), are difficult to obtain with adequate accuracy – especially for low-level thin clouds, which are ubiquitous in the Arctic. This study aims at evaluating the spectral and broadband irradiance calculated from MODIS-derived cloud properties in the Arctic using aircraft measurements collected during the Arctic Radiation-IceBridge Sea and Ice Experiment (ARISE), specifically using the upwelling and downwelling shortwave spectral and broadband irradiance measured by the Solar Spectral Flux Radiometer (SSFR) and the BroadBand Radiometer system (BBR). This entails the derivation of surface albedo from SSFR/BBR and camera imagery for heterogeneous surfaces in the marginal ice zone (MIZ), as well as subsequent measurement-model inter-comparisons in the presence of thin clouds. In addition to MODIS cloud retrievals and surface albedo from SSFR, we used temperature and humidity data from in-situ data and reanalysis (MERRA-2). The spectral surface albedo derived from the airborne radiometers is consistent with prior ground-based measurements, and adequately represents the surface variability for the study region and time period. Somewhat surprisingly, the primary error in MODIS-derived irradiance fields for this study stems from undetected clouds, rather than from the retrieved cloud properties. In our case studies, about 22 % of clouds remained undetected (cloud optical thickness less than 0.5). The radiative effect of clouds above the detection threshold was −40 W m−2 above cloud, and −39 W m−2 below the cloud layer, and the optical thickness from the MODIS "1621" cloud product was consistent with the reflected and transmitted irradiance observations. This study suggests that passive imagery cloud detection could be improved through a multi-pixel approach, that would make it more dependable in the Arctic. Regardless of the cloud retrieval method, there is a need for an operational imagery-based surface albedo product for the polar regions that adequately captures its temporal, spatial, and spectral variability to estimate cloud radiative effect from space-borne remote sensing.


2020 ◽  
Vol 20 (8) ◽  
pp. 5157-5173 ◽  
Author(s):  
Tatiana Nomokonova ◽  
Kerstin Ebell ◽  
Ulrich Löhnert ◽  
Marion Maturilli ◽  
Christoph Ritter

Abstract. The occurrence of events with increased and decreased integrated water vapor (IWV) at the Arctic site Ny-Ålesund, their relation to cloud properties, and the surface cloud radiative effect (CRE) is investigated. For this study, we used almost 2.5 years (from June 2016 to October 2018) of ground-based cloud observations processed with the Cloudnet algorithm, IWV from a microwave radiometer (MWR), long-term radiosonde observations, and backward trajectories FLEXTRA. Moist and dry anomalies were found to be associated with North Atlantic flows and air transport within the Arctic region, respectively. The amount of water vapor is often correlated to cloud occurrence, presence of cloud liquid water, and liquid water path (LWP) and ice water path (IWP). In turn, changes in the cloud properties cause differences in surface CRE. During dry anomalies, in autumn, winter, and spring, the mean net surface CRE was lower by 2–37 W m−2 with respect to normal conditions, while in summer the cloud-related surface cooling was reduced by 49 W m−2. In contrast, under moist conditions in summer the mean net surface CRE becomes more negative by 25 W m−2, while in other seasons the mean net surface CRE was increased by 5–37 W m−2. Trends in the occurrence of dry and moist anomalies were analyzed based on a 25-year radiosonde database. Dry anomalies have become less frequent, with rates for different seasons ranging from −12.8 % per decade to −4 % per decade, while the occurrence of moist events has increased at rates from 2.8 % per decade to 6.4 % per decade.


2020 ◽  
Vol 14 (8) ◽  
pp. 2673-2686 ◽  
Author(s):  
Ramdane Alkama ◽  
Patrick C. Taylor ◽  
Lorea Garcia-San Martin ◽  
Herve Douville ◽  
Gregory Duveiller ◽  
...  

Abstract. Clouds play an important role in the climate system: (1) cooling Earth by reflecting incoming sunlight to space and (2) warming Earth by reducing thermal energy loss to space. Cloud radiative effects are especially important in polar regions and have the potential to significantly alter the impact of sea ice decline on the surface radiation budget. Using CERES (Clouds and the Earth's Radiant Energy System) data and 32 CMIP5 (Coupled Model Intercomparison Project) climate models, we quantify the influence of polar clouds on the radiative impact of polar sea ice variability. Our results show that the cloud short-wave cooling effect strongly influences the impact of sea ice variability on the surface radiation budget and does so in a counter-intuitive manner over the polar seas: years with less sea ice and a larger net surface radiative flux show a more negative cloud radiative effect. Our results indicate that 66±2% of this change in the net cloud radiative effect is due to the reduction in surface albedo and that the remaining 34±1 % is due to an increase in cloud cover and optical thickness. The overall cloud radiative damping effect is 56±2 % over the Antarctic and 47±3 % over the Arctic. Thus, present-day cloud properties significantly reduce the net radiative impact of sea ice loss on the Arctic and Antarctic surface radiation budgets. As a result, climate models must accurately represent present-day polar cloud properties in order to capture the surface radiation budget impact of polar sea ice loss and thus the surface albedo feedback.


2020 ◽  
Author(s):  
Edward Gryspeerdt ◽  
Tom Goren ◽  
Tristan W. P. Smith

Abstract. The response of cloud processes to an aerosol perturbation is one of the largest uncertainties in the anthropogenic forcing of the climate. It occurs at a variety of timescales, from the near-instantaneous Twomey effect, to the longer timescales required for cloud adjustments. Understanding the temporal evolution of cloud properties following an aerosol perturbation is necessary to interpret the results of so-called "natural experiments" from a known aerosol source, such as a ship or industrial site. This work uses reanalysis windfields and ship emission information matched to observations of shiptracks to measure the timescales of cloud responses to aerosol in instantaneous (or "snapshot") images taken by polar-orbiting satellites. As found in previous studies, the local meteorological environment is shown to have a strong impact on the occurrence and properties of shiptracks, but there is a strong time dependence in their properties. The largest droplet number concentration (Nd) responses are found within three hours of emission, while cloud adjustments continue to evolve over periods of ten hours or more. Cloud fraction is increased within the early life of shiptracks, with the formation of shiptracks in otherwise clear skies indicating that around 5–10 % of clear-sky cases in this region may be aerosol-limited. The liquid water path (LWP) enhancement and the Nd-LWP sensitivity are also time dependent and strong functions of the background cloud and meteorological state. The near-instant response of the LWP within shiptracks may be evidence of a retrieval bias in previous estimates of the LWP response to aerosol derived from natural experiments. These results highlight the importance of temporal development and the background cloud field for quantifying the aerosol impact on clouds, even in situations where the aerosol perturbation is clear.


2021 ◽  
Vol 21 (8) ◽  
pp. 6093-6109
Author(s):  
Edward Gryspeerdt ◽  
Tom Goren ◽  
Tristan W. P. Smith

Abstract. The response of cloud processes to an aerosol perturbation is one of the largest uncertainties in the anthropogenic forcing of the climate. It occurs at a variety of timescales, from the near-instantaneous Twomey effect to the longer timescales required for cloud adjustments. Understanding the temporal evolution of cloud properties following an aerosol perturbation is necessary to interpret the results of so-called “natural experiments” from a known aerosol source such as a ship or industrial site. This work uses reanalysis wind fields and ship emission information matched to observations of ship tracks to measure the timescales of cloud responses to aerosol in instantaneous (or“snapshot”) images taken by polar-orbiting satellites. As in previous studies, the local meteorological environment is shown to have a strong impact on the occurrence and properties of ship tracks, but there is a strong time dependence in their properties. The largest droplet number concentration (Nd) responses are found within 3 h of emission, while cloud adjustments continue to evolve over periods of 10 h or more. Cloud fraction is increased within the early life of ship tracks, with the formation of ship tracks in otherwise clear skies indicating that around 5 %–10 % of clear-sky cases in this region may be aerosol-limited. The liquid water path (LWP) enhancement and the Nd–LWP sensitivity are also time dependent and strong functions of the background cloud and meteorological state. The near-instant response of the LWP within ship tracks may be evidence of a bias in estimates of the LWP response to aerosol derived from natural experiments. These results highlight the importance of temporal development and the background cloud field for quantifying the aerosol impact on clouds, even in situations where the aerosol perturbation is clear.


2021 ◽  
Author(s):  
Assia Arouf

&lt;p&gt;Clouds exert important effects on Earth's surface energy balance through their effects on longwave (LW) and shortwave (SW) radiation. Indeed, clouds radiatively warm the surface in the LW domain by emitting LW radiation back to the ground. The surface LW cloud radiative effect (CRE) quantifies this warming effect. To study the impact of clouds on the interanual natural climate variability, we need to observe them on a long time scale over all kinds of surfaces. The CALIPSO space lidar provides these observations by sampling the atmosphere along its track over all kinds of surfaces for over than 14 years (2006-2020).&lt;/p&gt;&lt;p&gt;In this work, we propose new estimates of the surface LW CRE from space-based lidar observations only. Indeed, we show from 1D atmospheric column radiative transfer calculations, that surface LW CRE at sea level linearly decreases with the cloud altitude. Thus, these computations allow to establish simple relationships between the surface LW CRE, and five cloud properties observed by the CALIPSO space lidar: the opaque cloud cover and altitude, the thin cloud cover, altitude, and emissivity. Over the 2008&amp;#8211;2011, CALIPSO-based retrieval (27.7 W m&lt;sup&gt;-2&lt;/sup&gt;) is 1.2 W m&lt;sup&gt;-2&lt;/sup&gt; larger than the one derived from combined space radar, lidar, and radiometer observations. Over the 2008&amp;#8211;2018 period, the global mean CALIPSO-based retrieval (27.5 W m&lt;sup&gt;-2&lt;/sup&gt;) is 0.1 W m&lt;sup&gt;-2&lt;/sup&gt; larger than the one derived from CERES space radiometer. Our estimates show that globally, opaque clouds warm the surface by 23.3 W m&lt;sup&gt;-2&lt;/sup&gt; and thin clouds contribute only by 4.2 W m&lt;sup&gt;-2&lt;/sup&gt;. At high latitudes North and South over oceans, the largest surface LW opaque CRE occurs in fall (40.4 W m&lt;sup&gt;-2&lt;/sup&gt;, 31.6 W m&lt;sup&gt;-2&lt;/sup&gt;) due to the formation of additional opaque low clouds after sea ice melting over a warmer ocean.&lt;/p&gt;&lt;p&gt;To quantify the cloud property that drives the temporal variations of the surface LW CRE, the surface LW CRE needs to be related by simple relationships to a finite number of cloud properties such as cloud opacity, cloud altitude and cloud cover. This study allows a decomposition and attribution approach of the surface LW CRE variations and shows that they are driven by the variations occurring in the opaque cloud properties. Moreover, opaque cloud cover drives over than 73% of global surface LW CRE interannual variations.&lt;/p&gt;


2020 ◽  
Vol 33 (1) ◽  
pp. 61-75 ◽  
Author(s):  
Norman G. Loeb ◽  
Fred G. Rose ◽  
Seiji Kato ◽  
David A. Rutan ◽  
Wenying Su ◽  
...  

AbstractA new method of determining clear-sky radiative fluxes from satellite observations for climate model evaluation is presented. The method consists of applying adjustment factors to existing satellite clear-sky broadband radiative fluxes that make the observed and simulated clear-sky flux definitions more consistent. The adjustment factors are determined from the difference between observation-based radiative transfer model calculations of monthly mean clear-sky fluxes obtained by ignoring clouds in the atmospheric column and by weighting hourly mean clear-sky fluxes with imager-based clear-area fractions. The global mean longwave (LW) adjustment factor is −2.2 W m−2 at the top of the atmosphere and 2.7 W m−2 at the surface. The LW adjustment factors are pronounced at high latitudes during winter and in regions with high upper-tropospheric humidity and cirrus cloud cover, such as over the west tropical Pacific, and the South Pacific and intertropical convergence zones. In the shortwave (SW), global mean adjustment is 0.5 W m−2 at TOA and −1.9 W m−2 at the surface. It is most pronounced over sea ice off of Antarctica and over heavy aerosol regions, such as eastern China. However, interannual variations in the regional SW and LW adjustment factors are small compared to those in cloud radiative effect. After applying the LW adjustment factors, differences in zonal mean cloud radiative effect between observations and climate models decrease markedly between 60°S and 60°N and poleward of 65°N. The largest regional improvements occur over the west tropical Pacific and Indian Oceans. In contrast, the impact of the SW adjustment factors is much smaller.


Sign in / Sign up

Export Citation Format

Share Document