scholarly journals The Mountain Weather and Climate of Denali, Alaska—An Overview

2020 ◽  
Vol 59 (4) ◽  
pp. 621-636
Author(s):  
Lea Hartl ◽  
Martin Stuefer ◽  
Tohru Saito

AbstractAn overview of climatological and meteorological conditions and their seasonal variability in the Denali summit region is presented, based on the NCEP–NCAR reanalysis 1 dataset for the 1948–2018 period. At the Denali grid cell, a warming trend of +0.02°C significant at the 95% level is found—equivalent to a temperature increase of 1.4°C over the time period. The number of very cold days (<−35°C) during the climbing season (April–July) has decreased by approximately a day per decade. The number of very windy days (≥20 m s−1) during the climbing season also shows a decreasing trend for the majority of the time series. To assess synoptic patterns that affect the Denali region, a self-organizing map algorithm was applied to the geopotential height (GPH) field extracted from the reanalysis data. In winter, the synoptic situation in the Denali region is dominated by frequent zonal flow and negative GPH anomalies associated with the polar front. As the polar front moves north during the seasonal cycle, patterns shift to largely positive GPH anomalies and more meridional flow. Extreme wind speeds unfavorable for climbing occur in all seasons and are associated mainly with the polar jet passing directly over Denali, or cyclogenesis in the Bering Sea. The frequency of occurrence of strongly zonal, low GPH patterns during the main climbing season (April–July) shows a slight decrease in recent years.

2020 ◽  
Vol 59 (12) ◽  
pp. 2113-2127
Author(s):  
Lea Hartl ◽  
Martin Stuefer ◽  
Tohru Saito ◽  
Yoshitomi Okura

AbstractWe present the data records and station history of an automatic weather station (AWS) on Denali Pass (5715 m MSL), Alaska. The station was installed by a team of climbers from the Japanese Alpine Club after a fatal accident involving Japanese climbers in 1989 and was operational intermittently between 1990 and 2007, measuring primarily air temperature and wind speed. In later years, the AWS was operated by the International Arctic Research Center of the University of Alaska Fairbanks. Station history is reconstructed from available documentation as archived by the expedition teams. To extract and preserve data records, the original datalogger files were processed. We highlight numerous challenges and sources of uncertainty resulting from the location of the station and the circumstances of its operation. The data records exemplify the harsh meteorological conditions at the site: air temperatures down to approximately −60°C were recorded, and wind speeds reached values in excess of 60 m s−1. Measured temperatures correlate strongly with reanalysis data at the 500-hPa level. An approximation of critical wind speed thresholds and a reanalysis-based reconstruction of the meteorological conditions during the 1989 accident confirm that the climbers faced extremely hazardous wind speeds and very low temperatures. The data from the Denali Pass AWS represent a unique historical record that can, we hope, serve as a basis for further monitoring efforts in the summit region of Denali.


2020 ◽  
Vol 59 (3) ◽  
pp. 567-588 ◽  
Author(s):  
Martina Bramberger ◽  
Andreas Dörnbrack ◽  
Henrike Wilms ◽  
Florian Ewald ◽  
Robert Sharman

AbstractStrong turbulence was encountered by the German High-Altitude Long-Range Research Aircraft (HALO) at flight level 430 (13.8 km) on 13 October 2016 above Iceland. In this event the turbulence caused altitude changes of the research aircraft of about 50 m within a period of approximately 15 s. Additionally, the automatic thrust control of the HALO could not control the large gradients in the horizontal wind speed and, consequently, the pilot had to switch off this system. Simultaneously, the French Falcon of Service des Avions Français Instrumentés pour la Recherche en Environnement (SAFIRE), flying 2 km below HALO, also encountered turbulence at almost the same location. On that day, mountain-wave (MW) excitation and propagation was favored by the alignment of strong surface winds and the polar front jet. We use a combination of in situ observations, ECMWF and empirical turbulence forecasts, and high-resolution simulations to characterize the observed turbulent event. These show that a pronounced negative vertical shear of the horizontal wind favored overturning and breaking of MWs in the area of the encountered turbulence. The turbulent region was tilted upstream and extended over a distance of about 2 km in the vertical. The analyses suggest that HALO was flying through the center of a breaking MW field while the French Falcon encountered the lower edge of this region. Surprisingly, the pronounced gradients in the horizontal wind speeds leading to the deactivation of the automatic thrust control were located north of the breaking MW field. In this area, our analysis suggests the presence of gravity waves that could have generated the encountered modulation of the horizontal wind field.


2017 ◽  
Vol 17 (2) ◽  
pp. 855-866 ◽  
Author(s):  
Leon S. Friedrich ◽  
Adrian J. McDonald ◽  
Gregory E. Bodeker ◽  
Kathy E. Cooper ◽  
Jared Lewis ◽  
...  

Abstract. Location information from long-duration super-pressure balloons flying in the Southern Hemisphere lower stratosphere during 2014 as part of X Project Loon are used to assess the quality of a number of different reanalyses including National Centers for Environmental Prediction Climate Forecast System version 2 (NCEP-CFSv2), European Centre for Medium-Range Weather Forecasts (ERA-Interim), NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA), and the recently released MERRA version 2. Balloon GPS location information is used to derive wind speeds which are then compared with values from the reanalyses interpolated to the balloon times and locations. All reanalysis data sets accurately describe the winds, with biases in zonal winds of less than 0.37 m s−1 and meridional biases of less than 0.08 m s−1. The standard deviation on the differences between Loon and reanalyses zonal winds is latitude-dependent, ranging between 2.5 and 3.5 m s−1, increasing equatorward. Comparisons between Loon trajectories and those calculated by applying a trajectory model to reanalysis wind fields show that MERRA-2 wind fields result in the most accurate simulated trajectories with a mean 5-day balloon–reanalysis trajectory separation of 621 km and median separation of 324 km showing significant improvements over MERRA version 1 and slightly outperforming ERA-Interim. The latitudinal structure of the trajectory statistics for all reanalyses displays marginally lower mean separations between 15 and 35° S than between 35 and 55° S, despite standard deviations in the wind differences increasing toward the equator. This is shown to be related to the distance travelled by the balloon playing a role in the separation statistics.


1980 ◽  
Vol 26 (94) ◽  
pp. 43-52 ◽  
Author(s):  
B.B. Fitzharris ◽  
P. A. Schaerer

AbstractA 70-Year record has been compiled for avalanches affecting the Canadian Pacific Railway at Rogers Pass, British Columbia. Time series are presented for avalanche frequency, avalanche mass, and length of avalanche debris on the rail line for 26 avalanche paths as well as for winter snow-fall. Winters with the heaviest avalanche activity were 1971-72, 1934-35, 1919-20, 1932-33, and 1953-54. Time-series analysis indicates that the size of avalanches has decreased in recent decades. Spectral analysis shows avalanche activity to the similar to white noise but with a weak periodicity of about 18 years. An examination of the climatology of big avalanche winters reveals two distinct circulation patterns: a strong zonal flow with frequent Pacific storms and heavy snow-fall; or a pronounced meridional flow, Arctic air outbreaks, and catastrophic avalanching released by rapid advection of warm moist Pacific air. Major avalanche winters need not be big snow-fall winters.


1984 ◽  
Vol 142 ◽  
pp. 343-362 ◽  
Author(s):  
Timothy L. Miller

A finite-difference Navier-Stokes model has been used to study rotating baroclinic flow for Richardson number [lsim ] 1, assuming no variations except in the vertical plane wholly containing the density-gradient vector. A section of a horizontally infinite channel has been studied, assuming periodic boundary conditions at the vertical computational boundaries and no-slip conducting horizontal boundaries. Two configurations were studied, both of which have an analytic basic solution with no horizontal variations in the velocities or density gradients. Symmetric baroclinic waves developed in the flows, as long as the Richardson number was not too large and the thermal Rossby number was large enough (for fixed diffusion parameters), consistent with linear theory. The structures and energetics of the fully developed waves were found to be especially dependent upon the Prandtl number Pr. Potential energy was the ultimate wave-energy source in all cases, and the average zonal flow was never much affected by the waves. For Pr > 1 the conversion from potential energy to wave kinetic energy was direct, via temperature and vertical-motion correlation. For Pr < 1 the conversion was from potential energy, to average kinetic energy by virtue of an induced meridional flow, to wave kinetic energy. For Pr = 1 the energy conversion was by either or both of the above, depending upon the other parameters.


2020 ◽  
Author(s):  
Obbe A. Tuinenburg ◽  
Jolanda J. E. Theeuwen ◽  
Arie Staal

Abstract. A key Earth system process is the circulation of evaporated moisture through the atmosphere. Spatial connections between evaporation and precipitation affect the global and regional climates by redistributing water and latent heat. Through this atmospheric moisture recycling, land-cover changes influence regional precipitation patterns, with potentially far-reaching effects on human livelihoods and biome distributions across the globe. However, a globally complete dataset of atmospheric moisture flows from evaporation to precipitation has been lacking so far. Here we present a dataset of global atmospheric moisture recycling on both 0.5° and 1.0° spatial resolution. We simulated the moisture flows between each pair of cells across all land and oceans for 2008–2017 and present their monthly climatological means. We applied the Lagrangian moisture tracking model UTrack, which is forced with ERA5 reanalysis data on 25 atmospheric layers and hourly wind speeds and directions. Due to the global coverage of the simulations, a complete picture of both the upwind source areas of precipitation and downwind target areas of evaporation can be obtained. We show a number of statistics of global atmospheric moisture flows: land recycling, basin recycling, mean latitudinal and longitudinal flows, absolute latitudinal and longitudinal flows, and basin recycling for the 26 largest river basins. We find that, on average, 70 % of global land evaporation rains down over land, varying between 62 % and 74 % across the year; 51 % of global land precipitation has evaporated from land, varying between 36 % and 57 % across the year. Highest basin recycling occurs in the Amazon and Congo basins, with evaporation and precipitation recycling of 63 % and 36 % for the Amazon basin and 60 % and 47 % for the Congo basin. These statistics are examples of the potential usage of the dataset, which allows users to identify and quantify the moisture flows from and to any area on Earth, from local to global scales. The dataset is available at https://doi.pangaea.de/10.1594/PANGAEA.912710 (Tuinenburg et al., 2020).


2012 ◽  
Vol 8 (2) ◽  
pp. 1443-1483 ◽  
Author(s):  
M. Nolan

Abstract. We compared 7 years of local automated weather station (AWS) data to NCEP/NCAR reanalysis data to characterize the modern environment of Lake El'gygytgyn, in Chukotka Russia. We then used this comparison to estimate the air temperatures required to initiate and maintain multi-year lake-ice covers to aid in paleoclimate reconstructions of the 3.6 M years sediment record recovered from there. We present and describe data from our AWS from 2002–2008, which recorded air temperatures, relative humidity, precipitation, barometric pressure, and wind speed/direction, as well as subsurface soil moisture and temperature. Measured mean annual air temperature (MAAT) over this period was −10.4 °C with a slight warming trend during the measurement period. NCEP/NCAR reanalysis air temperatures compared well to this, with annual means within 0.1 to 2.0 °C of the AWS, with an overall mean 1.1 °C higher than the AWS, and daily temperature trends having a correlation of over 96% and capturing the full range of variation. After correcting for elevation differences, barometric pressure discrepancies occasionally reached as high as 20 mbar higher than the AWS particularly in winter, but the correlation in trends was high at 92%, indicating that synoptic-scale weather patterns driving local weather likely are being captured by the reanalysis data. AWS cumulative summer rainfall measurements ranged between 70–200 mm during the record. NCEP/NCAR reanalysis precipitation failed to predict daily events measured by the AWS, but largely captured the annual trends, though higher by a factor of 2–4. NCEP air temperatures showed a strong trend in MAAT over the 1961–2009 record, rising from a pre-1995 mean of −12.0 °C to a post-1994 mean of −9.8 °C. We found that nearly all of this change could be explained by changes in winter temperatures, with mean winter degree days (DD) rising from −5043 to −4340 after 1994 and a much smaller change in summer DD from +666 to +700. Thus, the NCEP record indicates that nearly all modern change in MAAT is driven by changes in winter (which promotes lake-ice growth) not summer (which promotes lake-ice melt). Whether this sensitivity is representative of paleo-conditions is unclear, but it is clear that the lake was unlikely to have initiated a multi-year ice cover since 1961 based on simple DD models of ice dynamics. Using these models we found that the NCEP/NCAR reanalysis mean MAAT over 1961–2009 would have to be at least 4 °C colder to initiate a multi-year ice cover, but more importantly that multi-year ice covers are largely controlled by summer melt rates at this location. Specifically we found that summer DD would have to drop by more than half the modern mean, from +640 to +280. Given that the reanalysis temperatures appears about 1 °C higher than reality, a MAAT cooling of 3 °C may be sufficient in the real world, but as described in the text we consider a cooling of −4°C ± 0.5 °C a reasonable requirement for multi-year ice covers. Also perhaps relevant to paleo-climate proxy interpretation, at temperatures cold enough to maintain a multi-year ice cover, the summer temperatures could still be sufficient for a two-month long thawing period, including a month at about +5 °C Thus it is likely that many summer biological processes and some lake-water warming and mixing may still have been occurring beneath perennial ice-covers; core proxies have already indicated that such perennial ice-covers may have persisted for tens of thousands of years at various times within the 3.6 M years record.


2020 ◽  
Author(s):  
Simon Thomas ◽  
Oscar Martinez-Alvarado ◽  
Dan Drew ◽  
Hannah Bloomfield

&lt;p&gt;In this talk, we investigate the causes of the strongest and weakest winds observed across Mexico and explore the consequences of these to current and future wind energy production in the country. Using 40 years of the ERA-5 atmospheric reanalysis data, we find that the strongest winds in this region are caused by cold surges, where an anticyclone moves South from the Central United States of America resulting in strong Northerly winds across the Gulf of Mexico which channel through the gap in the mountains to the South of Mexico. Other regions have different drivers for high and low wind speed events. The strongest winds across the East coast of Mexico originate from Easterly trade winds propagating across the Gulf of Mexico, whereas those in Baja California Sur are influenced by the proximity of the North Pacific High. These regions in Mexico have&amp;#160;peak (and sustained low) wind speeds at different times of year&amp;#160;which suggests that wind farms in different regions could compliment one another to&amp;#160;optimise wind power generation. However, all stations but&amp;#160;Baja California Sur see the same weather patterns associated with weak wind events, meaning that low wind power production may be unavoidable at these times. The conditions that proceed these sustained periods of strong and weak winds are explored to gain some predictability for wind power applications. The El Nino Southern Oscillation is found to influence wind speeds at some locations across Mexico at sub-seasonal time-scales.&lt;/p&gt;


2019 ◽  
Vol 15 (3) ◽  
pp. 1-12
Author(s):  
Emilian Boboc

Abstract Usually, wind turbine generator’s structures or radio masts are located in wind exposed sites. The paper aims to investigate the wind conditions in the nearby area of Cobadin Commune, Constanta County, Romania at heights of 150-200m above the surface using global reanalysis data sets CFSR, ERA 5, ERA I and MERRA 2. Using the extreme value theory and the physical models of the datasets, the research focuses on the assessment of the maximum values that are expected for the wind speeds, but the wind statistics created can be used for a further wind or energy yield calculation. Without reaching the survival wind speed for wind turbine generators, with mean wind speed values higher than 7 m/s and considering the cut-in and cut-out wind speeds of 3 m/s, respectively 25 m/s, the site can be exploited in more than 90% of the time to generate electricity, thus, the paper is addressed to the investors in the energy of renewable sources. At the same time, the insights of the wind characteristics and the knowledge of the extreme values of the wind speed can be useful, not just for the designers, in the rational assessment of the structural safety of wind turbines, but also those evaluating the insured losses.


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1216
Author(s):  
Lijun Liu ◽  
Fan Zhang

Wind speed affects the navigational safety of the Yangtze River, and assessing its spatiotemporal dynamics provides support for navigation management and disaster prevention. We developed a wind multiplier downscaling method integrating the effects of land use and topography, and used meteorological station observations and European Center for Medium-Range Weather Forecasts (ECMWF) Reanalysis Interim (ERA-Interim) reanalysis data for statistical downscaling in the Yangtze River inland waterway region from 1980 to 2017. Compared with reanalysis data, the downscaling products showed improved accuracy (especially at 5–10 m/s), and are consistent with site-based interannual variability observations. Increasing maximum wind speeds in the middle–downstream area was observed from 1980 to 1990, while a decreasing trend was observed from 2010 to 2017; the opposite was observed for the upstream. Land use has significant influence on wind speed, with a decreasing trend observed year by year for wind speed above grade 9. Although the proportion of grade 4–8 wind speed over water is small and the trend is not obvious, grade 9–10 wind speeds displayed an increasing trend from 2010 to 2017, indicating that changes in surface roughness have a significant influence on wind speed in the Yangtze River inland waterway.


Sign in / Sign up

Export Citation Format

Share Document