scholarly journals Drivers of Extreme Wind Events in Mexico for Wind Power Applications

Author(s):  
Simon Thomas ◽  
Oscar Martinez-Alvarado ◽  
Dan Drew ◽  
Hannah Bloomfield

<p>In this talk, we investigate the causes of the strongest and weakest winds observed across Mexico and explore the consequences of these to current and future wind energy production in the country. Using 40 years of the ERA-5 atmospheric reanalysis data, we find that the strongest winds in this region are caused by cold surges, where an anticyclone moves South from the Central United States of America resulting in strong Northerly winds across the Gulf of Mexico which channel through the gap in the mountains to the South of Mexico. Other regions have different drivers for high and low wind speed events. The strongest winds across the East coast of Mexico originate from Easterly trade winds propagating across the Gulf of Mexico, whereas those in Baja California Sur are influenced by the proximity of the North Pacific High. These regions in Mexico have peak (and sustained low) wind speeds at different times of year which suggests that wind farms in different regions could compliment one another to optimise wind power generation. However, all stations but Baja California Sur see the same weather patterns associated with weak wind events, meaning that low wind power production may be unavoidable at these times. The conditions that proceed these sustained periods of strong and weak winds are explored to gain some predictability for wind power applications. The El Nino Southern Oscillation is found to influence wind speeds at some locations across Mexico at sub-seasonal time-scales.</p>

2021 ◽  
Author(s):  
Ida Marie Solbrekke ◽  
Asgeir Sorteberg ◽  
Hilde Haakenstad

Abstract. A new high-resolution (3 km) numerical mesoscale weather simulation spanning the period 2004–2018 is validated for offshore wind power purposes for the North Sea and Norwegian Sea. The NORwegian hindcast Archive (NORA3) was created by dynamical downscaling, forced with state-of-the-art hourly atmospheric reanalysis as boundary conditions. A validation of the simulated wind climatology has been carried out to determine the ability of NORA3 to act as a tool for planning future offshore wind power installations. Special emphasis is placed on evaluating offshore wind power-related metrics and the impact of simulated wind speed deviations on the estimated wind power and the related variability. The general conclusion of the validation is that the NORA3 data is rather well suited for wind power estimates, but gives slightly conservative estimates on the offshore wind metrics. Wind speeds are typically 5 % (0.5 ms−1) lower than observed wind speeds, giving an underestimation of offshore wind power of 10 %–20 % (equivalent to an underestimation of 3 percentage point in the capacity factor), for a selected turbine type and hub height. The model is biased towards lower wind power estimates because of overestimation of the frequency of low-speed wind events (< 10 ms−1) and underestimation of high-speed wind events (> 10 ms−1). The hourly wind speed and wind power variability are slightly underestimated in NORA3. However, the number of hours with zero power production (around 12 % of the time) is fairly well captured, while the duration of each of these events is slightly overestimated, leading to 25-year return values for zero-power duration being too high for four of the six sites. The model is relatively good at capturing spatial co-variability in hourly wind power production among the sites. However, the observed decorrelation length was estimated to be 432 km, whereas the model-based length was 19 % longer.


2018 ◽  
Vol 76 (3) ◽  
pp. 626-638 ◽  
Author(s):  
J Anthony Koslow ◽  
Pete Davison ◽  
Erica Ferrer ◽  
S Patricia A Jiménez Rosenberg ◽  
Gerardo Aceves-Medina ◽  
...  

Abstract Declining oxygen concentrations in the deep ocean, particularly in areas with pronounced oxygen minimum zones (OMZs), are a growing global concern related to global climate change. Its potential impacts on marine life remain poorly understood. A previous study suggested that the abundance of a diverse suite of mesopelagic fishes off southern California was closely linked to trends in midwater oxygen concentration. This study expands the spatial and temporal scale of that analysis to examine how mesopelagic fishes are responding to declining oxygen levels in the California Current (CC) off central, southern, and Baja California. Several warm-water mesopelagic species, apparently adapted to the shallower, more intense OMZ off Baja California, are shown to be increasing despite declining midwater oxygen concentrations and becoming increasingly dominant, initially off Baja California and subsequently in the CC region to the north. Their increased abundance is associated with warming near-surface ocean temperature, the warm phase of the Pacific Decadal oscillation and Multivariate El Niño-Southern Oscillation Index, and the increased flux of Pacific Equatorial Water into the southern CC.


2021 ◽  
pp. 0309524X2110438
Author(s):  
Carlos Méndez ◽  
Yusuf Bicer

The present study analyzes the wind energy potential of Qatar, by generating a wind atlas and a Wind Power Density map for the entire country based on ERA-5 data with over 41 years of measurements. Moreover, the wind speeds’ frequency and direction are analyzed using wind recurrence, Weibull, and wind rose plots. Furthermore, the best location to install a wind farm is selected. The results indicate that, at 100 m height, the mean wind speed fluctuates between 5.6054 and 6.5257 m/s. Similarly, the Wind Power Density results reflect values between 149.46 and 335.06 W/m2. Furthermore, a wind farm located in the selected location can generate about 59.7437, 90.4414, and 113.5075 GWh/y electricity by employing Gamesa G97/2000, GE Energy 2.75-120, and Senvion 3.4M140 wind turbines, respectively. Also, these wind farms can save approximately 22,110.80, 17,617.63, and 11,637.84 tons of CO2 emissions annually.


Author(s):  
Fernando del Jesus ◽  
Raúl Guanche ◽  
Íñigo J. Losada ◽  
César Vidal

Offshore wind energy turbines are being deployed massively in the North Sea. Most of the latest developments are monopile based due to the local bathymetry. However, future offshore wind farms will be located at larger water depths. Mainly because the nearest sites to the shoreline will be already occupied, future wind farms will be in 60 m water depth at least. This is, approximately, the limit for fixed support structures, such as monopiles, tripods and jackets. Some developers have already identified this need and some prototypes are under testing, such as WindFloat and Hywind. Floating wind technology will face some challenges. One of the most important ones is how to moderate the cost of the platform and the mooring system. Consequently, it is necessary to reduce the uncertainty during design steps. In this paper, new extreme mixed model will be applied to mooring system design. This extreme model combines instrumental and reanalysis data in order to obtain more accurate design parameters, reducing the uncertainty and improving the input that is required for the structural design of these concepts.


2020 ◽  
Vol 33 (3) ◽  
pp. 907-923 ◽  
Author(s):  
Bianca Mezzina ◽  
Javier García-Serrano ◽  
Ileana Bladé ◽  
Fred Kucharski

AbstractThe winter extratropical teleconnection of El Niño–Southern Oscillation (ENSO) in the North Atlantic–European (NAE) sector remains controversial, concerning both the amplitude of its impacts and the underlying dynamics. However, a well-established response is a late-winter (January–March) signal in sea level pressure (SLP) consisting of a dipolar pattern that resembles the North Atlantic Oscillation (NAO). Clarifying the relationship between this “NAO-like” ENSO signal and the actual NAO is the focus of this study. The ENSO–NAE teleconnection and NAO signature are diagnosed by means of linear regression onto the sea surface temperature (SST) Niño-3.4 index and an EOF-based NAO index, respectively, using long-term reanalysis data (NOAA-20CR, ERA-20CR). While the similarity in SLP is evident, the analysis of anomalous upper-tropospheric geopotential height, zonal wind, and transient-eddy momentum flux, as well as precipitation and meridional eddy heat flux, suggests that there is no dynamical link between the phenomena. The observational results are further confirmed by analyzing two 10-member ensembles of atmosphere-only simulations (using an intermediate-complexity and a state-of-the-art model) with prescribed SSTs over the twentieth century. The SST-forced variability in the Northern Hemisphere is dominated by the extratropical ENSO teleconnection, which provides modest but significant SLP skill in the NAE midlatitudes. The regional internally generated variability, estimated from residuals around the ensemble mean, corresponds to the NAO pattern. It is concluded that distinct dynamics are at play in the ENSO–NAE teleconnection and NAO variability, and caution is advised when interpreting the former in terms of the latter.


2004 ◽  
Vol 29 (13) ◽  
pp. 2087-2100 ◽  
Author(s):  
O.A Jaramillo ◽  
R Saldaña ◽  
U Miranda

2007 ◽  
Vol 46 (11) ◽  
pp. 1701-1717 ◽  
Author(s):  
Cristina L. Archer ◽  
Mark Z. Jacobson

Abstract Wind is the world’s fastest growing electric energy source. Because it is intermittent, though, wind is not used to supply baseload electric power today. Interconnecting wind farms through the transmission grid is a simple and effective way of reducing deliverable wind power swings caused by wind intermittency. As more farms are interconnected in an array, wind speed correlation among sites decreases and so does the probability that all sites experience the same wind regime at the same time. The array consequently behaves more and more similarly to a single farm with steady wind speed and thus steady deliverable wind power. In this study, benefits of interconnecting wind farms were evaluated for 19 sites, located in the midwestern United States, with annual average wind speeds at 80 m above ground, the hub height of modern wind turbines, greater than 6.9 m s−1 (class 3 or greater). It was found that an average of 33% and a maximum of 47% of yearly averaged wind power from interconnected farms can be used as reliable, baseload electric power. Equally significant, interconnecting multiple wind farms to a common point and then connecting that point to a far-away city can allow the long-distance portion of transmission capacity to be reduced, for example, by 20% with only a 1.6% loss of energy. Although most parameters, such as intermittency, improved less than linearly as the number of interconnected sites increased, no saturation of the benefits was found. Thus, the benefits of interconnection continue to increase with more and more interconnected sites.


2018 ◽  
Vol 6 (1) ◽  
pp. 18
Author(s):  
Boluwaji Olomiyesan

In this study, the predictive ability of two-parameter Weibull distribution function in analyzing wind speed data was assessed in two selected sites with different mean wind speeds in the North-Western region of Nigeria. Twenty-two years wind speed data spanning from 1984 to 2005 was used in the analysis. The data were obtained from the Nigerian Meteorological Agency (NIMET) in Lagos. The results of the analysis show that Weibull function is suitable for analyzing measured wind speed data and in predicting the wind-power density in both locations and that Weibull function is not discriminative between locations with high and low mean wind speeds in analyzing wind data. The annual mean wind speeds for the two sites (Sokoto and Yelwa) are 7.99 ms-1 and 2.59 ms-1 respectively, while the annual values of the most probable wind speed and the maximum, energy-carrying wind speeds are respectively:3.52 and 4.34 ms-1 for Yelwa and 8.33 and 9.02 ms-1 for Sokoto. The estimated annual wind power densities for Yelwa and Sokoto are respectively 36.91 and 359.96 Wm-2. Therefore, Sokoto has a better prospect for wind power generation.


2019 ◽  
Vol 122 ◽  
pp. 04003
Author(s):  
Eugen Rusu ◽  
Florin Onea

The aim of this work is to identify the most suitable offshore wind farms from Germany that present relevant wave conditions, suitable for the development of a wave energy project. By using the ERA-Interim data (wind and waves) reported for the time interval from 1999 and 2018, was possible to identify the more important areas, by taking also into account the seasonal distributions. Several wave energy converters were considered for assessment, for which a capacity factor located between 2.5% and 14% was reported, better results being accounted by the Seabased system (rated at 15 kW). Finally, we canconcluded that the North Sea represent an important area in terms of the marine energy and since at this moment there are operational wave projects, this will represent a suitable area for the development of a mixed wind-wave project.


Sign in / Sign up

Export Citation Format

Share Document